Abstract

We have investigated how high-order harmonics generated in rare gases depend on the atomic density. The peak and the profile of the atomic density in the interaction region were measured as a function of the backing pressure and the distance from the nozzle by a differential interferometry technique. The conversion efficiency for the harmonics in the plateau was found to increase approximately quadratically over the entire range of peak pressures investigated (3–80 mbar). The intensity of the harmonics in the cutoff region, in contrast, increased only until an optimum peak pressure was reached, beyond which it decreased. This optimum peak pressure was found to be dependent on both the laser intensity and the process order. To understand this effect, we have performed extensive propagation calculations of both the fundamental and the harmonic fields, using ionization rates and dipole moments from a tunnel ionization model. We obtained good agreement with the experimental results. The observed effect is attributed to ionization-induced defocusing of the fundamental laser beam, which reduces the peak intensity obtained in the medium and shortens the extent of the plateau.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription