Abstract

It is shown that significant optical power is generated in secondary pulsations after switch-off of vertical-cavity surface-emitting laser diodes (VCSEL’s) when the laser is modulated from an above-threshold state to a current that is at or below the threshold value. It is found from simulations that the optical power in the secondary pulsations can be as much as 25% of the power in the lasing state. The initial reduction of optical output power subsequent to the switch-off permits a spatial redistribution of charge carriers that in turn permits a transient recovery of the modal gain above the threshold value, thus enabling the secondary pulsations to occur. The phenomenon occurs as a result of the interplay between the transverse-mode structure and the gain medium and, as such, cannot be predicted by spatially independent rate equation models. Implications of the phenomenon for practical applications of VCSEL’s with pseudorandom nonreturn-to-zero modulation formats are pointed out.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
    [Crossref]
  2. M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
    [Crossref]
  3. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
    [Crossref]
  4. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
    [Crossref]
  5. C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
    [Crossref]
  6. C. H. Chong and J. Sarma, “Self-consistent calculations of two-dimensional carrier distribution and modal gain of lasing modes in cylindrical VCSELs,” Proc. Soc. Photo-Opt. Instrum. Eng. 2146, 397–408 (1994).
  7. K. D. Choquette and R. E. Leibenguth, “Control of vertical cavity polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
    [Crossref]
  8. Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
    [Crossref]
  9. N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
    [Crossref]
  10. D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
    [Crossref]
  11. K. Furuya, Y. Suematsu, and T. Hong, “Reduction of resonance-like peak in direct modulation due to carrier diffusion in injection lasers,” Appl. Opt. 17, 1949–1952 (1978).
    [Crossref] [PubMed]
  12. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
    [Crossref]
  13. N. K. Dutta, “Analysis of current spreading, carrier diffusion and transverse mode guiding in surface emitting lasers,” J. Appl. Phys. 68, 1961–1963 (1990).
    [Crossref]
  14. A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of VCSELs,” IEEE J. Quantum Electron. (to be published).

1994 (2)

C. H. Chong and J. Sarma, “Self-consistent calculations of two-dimensional carrier distribution and modal gain of lasing modes in cylindrical VCSELs,” Proc. Soc. Photo-Opt. Instrum. Eng. 2146, 397–408 (1994).

K. D. Choquette and R. E. Leibenguth, “Control of vertical cavity polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

1993 (4)

Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
[Crossref]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[Crossref]

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

1991 (2)

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

1990 (2)

N. K. Dutta, “Analysis of current spreading, carrier diffusion and transverse mode guiding in surface emitting lasers,” J. Appl. Phys. 68, 1961–1963 (1990).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

1981 (1)

D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
[Crossref]

1978 (2)

K. Furuya, Y. Suematsu, and T. Hong, “Reduction of resonance-like peak in direct modulation due to carrier diffusion in injection lasers,” Appl. Opt. 17, 1949–1952 (1978).
[Crossref] [PubMed]

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

Aiki, K.

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

Asaka, T.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Asom, M. T.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Callis, S. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Chang-Hasnain, C. J.

Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Chinone, N.

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

Chong, C. H.

C. H. Chong and J. Sarma, “Self-consistent calculations of two-dimensional carrier distribution and modal gain of lasing modes in cylindrical VCSELs,” Proc. Soc. Photo-Opt. Instrum. Eng. 2146, 397–408 (1994).

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[Crossref]

Choquette, K. D.

K. D. Choquette and R. E. Leibenguth, “Control of vertical cavity polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

Coldren, L. A.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

Corzine, S. W.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

Dutta, N. K.

N. K. Dutta, “Analysis of current spreading, carrier diffusion and transverse mode guiding in surface emitting lasers,” J. Appl. Phys. 68, 1961–1963 (1990).
[Crossref]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Focht, M. W.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Fujii, S.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Furuya, K.

Geels, R. S.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

Guth, G. D.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

Hong, T.

Ito, R.

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

Iwanu, H.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Kojima, K.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Lau, K.

D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
[Crossref]

Leibenguth, R. E.

K. D. Choquette and R. E. Leibenguth, “Control of vertical cavity polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

Morgan, R. A.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Mori, M.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Nabiev, R.

Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
[Crossref]

Nakamura, M.

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

Ogura, M.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Okada, T.

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Orenstein, M.

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Rogers, L. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

Sarma, J.

C. H. Chong and J. Sarma, “Self-consistent calculations of two-dimensional carrier distribution and modal gain of lasing modes in cylindrical VCSELs,” Proc. Soc. Photo-Opt. Instrum. Eng. 2146, 397–408 (1994).

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[Crossref]

A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of VCSELs,” IEEE J. Quantum Electron. (to be published).

Scott, J. W.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

Shore, K. A.

A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of VCSELs,” IEEE J. Quantum Electron. (to be published).

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Suematsu, Y.

Valle, A.

A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of VCSELs,” IEEE J. Quantum Electron. (to be published).

von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Wilt, D. P.

D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
[Crossref]

Wu, Y. A.

Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
[Crossref]

Yariv, A.

D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. J. Chang-Hasnain, M. Orenstein, A. C. von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[Crossref]

Electron. Lett. (1)

Y. A. Wu, C. J. Chang-Hasnain, and R. Nabiev, “Single mode emission from a passive anti-guide region vertical cavity surface emitting laser,” Electron. Lett. 29, 1861–1863 (1993).
[Crossref]

IEEE J. Quantum Electron. (3)

N. Chinone, K. Aiki, M. Nakamura, and R. Ito, “Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers,” IEEE J. Quantum Electron. 14, 625–631 (1978).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[Crossref]

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modelling temperature effects and spatial hole-burning to optimise vertical cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1307 (1993); N. K. Dutta, L. W. Tu, G. Hasnain, G. Zydzik, Y. H. Wang, and A. Y. Cho, “Anomalous temporal response of gain-guided surface emitting lasers,” Electron. Lett. 27, 208–210 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (3)

K. D. Choquette and R. E. Leibenguth, “Control of vertical cavity polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[Crossref]

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[Crossref]

J. Appl. Phys. (2)

D. P. Wilt, K. Lau, and A. Yariv, “The effect of lateral carrier diffusion on the modulation response of a semiconductor laser,” J. Appl. Phys. 52, 4970–4974 (1981).
[Crossref]

N. K. Dutta, “Analysis of current spreading, carrier diffusion and transverse mode guiding in surface emitting lasers,” J. Appl. Phys. 68, 1961–1963 (1990).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ogura, S. Fujii, T. Okada, M. Mori, T. Asaka, and H. Iwanu, “Transverse mode characteristics of DBR-surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

C. H. Chong and J. Sarma, “Self-consistent calculations of two-dimensional carrier distribution and modal gain of lasing modes in cylindrical VCSELs,” Proc. Soc. Photo-Opt. Instrum. Eng. 2146, 397–408 (1994).

Other (1)

A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of VCSELs,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of a VCSEL. (b) Radial intensity profiles of the LP01, LP11, and LP21 modes of the structure in (a).

Fig. 2
Fig. 2

Temporal evolution of (a) laser optical output power and (b) modal gain for a modulated laser with T = 5 ns, jon = 6jth, and joff = 0.9jth.

Fig. 3
Fig. 3

Spatiotemporal evolution of the carrier density in the modulated laser of Fig. 2.

Fig. 4
Fig. 4

Dynamical growth of the average optical power carried in the secondary optical pulsations during the off semiperiod of the laser for joff = 0.9jth and three different values of jon.

Fig. 5
Fig. 5

Dynamical growth of the average optical power carried in the secondary optical pulsations during the off semiperiod of the laser for jon = 4jth and three different values of joff.

Fig. 6
Fig. 6

Ratio between optical powers in laser off and on states as a function of jon (normalized with respect to jth) for three different values of joff.

Fig. 7
Fig. 7

Ratio between optical powers in the laser off and on states for jon = 6jth, joff = 0.9jth, and T = 2 ns as a function of the (a) active-region thickness d, (b) carrier diffusion coefficient Dn, (c) active-region radius a.

Fig. 8
Fig. 8

Temporal evolution of optical output power in a VCSEL subject to pseudorandom nonreturn-to-zero modulation. The current density during 1 bits (jon = 6jth) and current density during 0 bits (joff = 0.9jth) are also shown.

Tables (1)

Tables Icon

Table 1 Device and Material Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ψ m n ( r ) = J m ( u r / a ) / J m ( u )             r a ,
Ψ m n ( r ) = K m ( w r / a ) / K m ( w )             r > a .
N / t = D n 1 / r / r ( r N / r ) - B N 2 - α g P Ψ 2 ( r ) / ( + s P ) + j 0 / e d ,
g = 0 Ψ 2 ( r ) A [ N ( r , t ) - N t ] r d r / Ψ 2 .
Ψ 2 = 0 Ψ 2 ( r ) r d r .
d P / d t = c Γ g P / ( 1 + s P ) - P / τ p + β B N ˜ 2 / V ,
N ˜ = 2 π d 0 a N ( r ) r d r .
W = 1 T t min 2 T P ( t ) d t ,

Metrics