Abstract

We show that we can efficiently achieve surface-emitting second-harmonic generation in vertical and horizontal cavities. The fundamental beam is coupled into the waveguide, which consists of III–V or II–VI semiconductor multilayers or asymmetric quantum-well domain structures. The generated second-harmonic radiation propagates along the growth direction of these layers (which is normal to the propagation direction of the fundamental beam). The quasi-phase matching is achieved when second-order susceptibility is modulated along the growth direction in these structures. By the proper design of these structures, the frequency doublers based on these structures together can cover the spectrum of 0.8–2.0 μm. If the pump power density is sufficiently large, the conversion efficiency approaches saturation. The saturation power per unit waveguide width is between ~0.9 and ~435 mW/μm. At such a power density, 72% conversion efficiency can be achieved. In addition, the proposed frequency doublers are, in principle, broadband.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (50)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription