Abstract

A system for the rapid-scan (RS) acquisition of time-resolved nonlinear spectroscopic signals, capable of femtosecond resolution over a range of tens of picoseconds, is presented. Operationally, the system is based on a magnetically driven, commercially available velocity transducer that continuously scans a probe delay line relative to a fixed delay line while data are recorded on the fly and in real time. A simple calibration and data time-scale linearization are carried out and tested on optical-heterodyne-detected optical-Kerr-effect measurements. These results are compared with data acquired with a detection system that is based on a stepped delay-line lock-in amplifier. It is found that the RS system is favorable in several areas of signal acquisition, including signal-to-noise ratio, acquisition time, spectral resolution in the Fourier-transformed data, and immunity to artifacts such as baseline distortions.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription