Abstract

Soda-lime silicate glass has been locally doped with 0.2-at. % erbium by 3.0- and 5.0-MeV ion implantation. Single-mode fiber-compatible optical waveguides were then fabricated by use of Na+ ↔ K+ ion exchange. Characteristic photoluminescence (PL) of Er3+ centered at 1.54 μm is observed on excitation at 1.48 μm. For low pump intensity the PL decay is nearly single exponential with a lifetime of 7.2 ms. At high intensity it becomes nonexponential as a result of cooperative upconversion, an interaction between excited Er ions. Self-consistent modeling of the PL intensity and decay data yields an upconversion coefficient of 3.2 ± 0.8 × 10−24 m3/s. The effect of upconversion on optical gain is shown and discussed. An extrapolation of measured optical gain shows that 1 dB/cm of net gain is possible in the present Er-implanted soda-lime glass.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, "The golden age of optical fiber amplifiers," Phys. Today 47(1), 20–27 (1994).
    [CrossRef]
  2. B. J. Ainslie, "A review of the fabrication and properties of erbium-doped fibers for optical amplifiers," J. Lightwave Technol. 9, 220–227 (1991).
    [CrossRef]
  3. E. Desurvire, J. R. Simpson, and P. C. Becker, "High-gain erbium-doped traveling-wave fiber amplifier," Opt. Lett. 12, 888–890 (1987).
    [CrossRef] [PubMed]
  4. C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
    [CrossRef]
  5. W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
    [CrossRef]
  6. J. C. Wright, "Up-conversion and excited state energy transfer in rare-earth doped materials," in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed., Vol. 15 in Topics in Applied Physics (Springer, Heidelberg, 1976), pp. 238–295.
    [CrossRef]
  7. G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
    [CrossRef]
  8. E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
    [CrossRef]
  9. J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
    [CrossRef]
  10. Fisher Premium soda-lime glass, with composition (in mole percent) 72.2 SiO2, 14.3 Na2O, 6.4 CaO, 1.2 K2O, and small quantities of other oxides.
  11. E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).
  12. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.
  13. N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
    [CrossRef]
  14. S. Hüfner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).
  15. Pump powers inside the waveguide were obtained by subtraction of the 2.5-dB insertion loss from the launched pump power.
  16. Note that the influence of excited-state absorption of pump photons on n2 is small owing to the short lifetimes of the higher-lying manifolds.
  17. σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
    [CrossRef]
  18. A. M. Vredenberg and J. Shmulovich, AT&T Bell Laboratories, Murray Hill, N.J. 07974-0636 (personal communication, 1993).
  19. P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
    [CrossRef]
  20. K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.
  21. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
    [CrossRef]
  22. S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
    [CrossRef]
  23. P. Mazzoldi and G. W. Arnold, "Ion beam modification of glasses," in Ion Beam Modification of Insulators, P. Mazzoldi and G. W. Arnold, eds., Vol. 2 of Series in Beam Modification of Materials (Elsevier, Amsterdam, 1987), pp. 195–222.
  24. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.
  25. G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
    [CrossRef]

1994 (1)

E. Desurvire, "The golden age of optical fiber amplifiers," Phys. Today 47(1), 20–27 (1994).
[CrossRef]

1993 (3)

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

1991 (6)

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

B. J. Ainslie, "A review of the fabrication and properties of erbium-doped fibers for optical amplifiers," J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

1990 (1)

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

1989 (1)

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

1987 (1)

Ainslie, B. J.

B. J. Ainslie, "A review of the fabrication and properties of erbium-doped fibers for optical amplifiers," J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

Andrews, L. J.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Arnold, G. W.

P. Mazzoldi and G. W. Arnold, "Ion beam modification of glasses," in Ion Beam Modification of Insulators, P. Mazzoldi and G. W. Arnold, eds., Vol. 2 of Series in Beam Modification of Materials (Elsevier, Amsterdam, 1987), pp. 195–222.

Baken, N. H. G.

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Becker, P. C.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

E. Desurvire, J. R. Simpson, and P. C. Becker, "High-gain erbium-doped traveling-wave fiber amplifier," Opt. Lett. 12, 888–890 (1987).
[CrossRef] [PubMed]

Bernardi, C. De

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Blixt, P.

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Blok, H.

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Blonder, G. E.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Bruce, A. J.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

Cacciato, A.

E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).

Carlnäs, T.

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Cognolato, L.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Desurvire, E.

Diemeer, M. B. J.

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

DiGiovanni, D. J.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

Eaglesham, D. J.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

Ferraris, M.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Folweiler, R. C.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Gnazzo, A.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Hall, B. T.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Haner, M.

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

Hattori, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.

Hendriksen, B.

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

Henry, C. H.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Horiguchi, M.

K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

Hoven, G. N. van den

E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
[CrossRef]

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

Hüfner, S.

S. Hüfner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).

Jacobson, D. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

Jaskorzynska, B.

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Kazarinov, R. F.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Kistler, R. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

Kitagawa, T.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.

Kobayashi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

Lambert, G.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Mazzoldi, P.

P. Mazzoldi and G. W. Arnold, "Ion beam modification of glasses," in Ion Beam Modification of Insulators, P. Mazzoldi and G. W. Arnold, eds., Vol. 2 of Series in Beam Modification of Materials (Elsevier, Amsterdam, 1987), pp. 195–222.

Miniscalco, W. J.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Morasca, S.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Nilsson, J.

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Nykolak, G.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

Pennings, E. C. M.

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

Poate, J. M.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

Polman, A.

E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

Scarano, D.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Shmulovich, J.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

A. M. Vredenberg and J. Shmulovich, AT&T Bell Laboratories, Murray Hill, N.J. 07974-0636 (personal communication, 1993).

Shuto, K.

K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

Simpson, J. R.

Snoeks, E.

E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
[CrossRef]

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).

Splunter, J. M. van

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Tol, J. J. G. M. van der

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

Verhoof, J. W.

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

Vredenberg, A. M.

A. M. Vredenberg and J. Shmulovich, AT&T Bell Laboratories, Murray Hill, N.J. 07974-0636 (personal communication, 1993).

Weber, T.

E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).

Wei, T.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Wong, Y. H.

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

Wright, J. C.

J. C. Wright, "Up-conversion and excited state energy transfer in rare-earth doped materials," in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed., Vol. 15 in Topics in Applied Physics (Springer, Heidelberg, 1976), pp. 238–295.
[CrossRef]

Yasu, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

Zemon, S.

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

Electron. Lett. (1)

J. J. G. M. van der Tol, J. W. Verhoof, M. B. J. Diemeer, and E. C. M. Pennings, "S-bends using offsets in fibre-compatible K+–Na+ ion-exchanged glass waveguides," Electron. Lett. 27, 379–380 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiovanni, and A. J. Bruce, "Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides," IEEE Photon. Technol. Lett. 5, 1014–1016 (1993).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, "Concentration-dependent upconversion in Er3+ -doped fiber amplifiers: experiments and modeling," IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier," IEEE Photon. Technol. Lett. 5, 1185–1187 (1993).
[CrossRef]

J. Appl. Phys. (3)

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation," J. Appl. Phys. 70, 3778–3784 (1991).
[CrossRef]

S. Zemon, G. Lambert, L. J. Andrews, W. J. Miniscalco, B. T. Hall, T. Wei, and R. C. Folweiler, "Characterization of Er3+-doped glasses by fluorescence line narrowing," J. Appl. Phys. 69, 6799–6811 (1991).
[CrossRef]

E. Snoeks, G. N. van den Hoven, and A. Polman, "Optical doping of soda-lime-silicate glass with erbium by ion implantation," J. Appl. Phys. 73, 8179–8183 (1993).
[CrossRef]

J. Lightwave Technol. (4)

N. H. G. Baken, M. B. J. Diemeer, J. M. van Splunter, and H. Blok, "Computational modeling of diffused channel waveguides using a domain integral equation," J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

B. J. Ainslie, "A review of the fabrication and properties of erbium-doped fibers for optical amplifiers," J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, "Glass waveguides on silica for hybrid optical packaging," J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Today (1)

E. Desurvire, "The golden age of optical fiber amplifiers," Phys. Today 47(1), 20–27 (1994).
[CrossRef]

Other (12)

P. Mazzoldi and G. W. Arnold, "Ion beam modification of glasses," in Ion Beam Modification of Insulators, P. Mazzoldi and G. W. Arnold, eds., Vol. 2 of Series in Beam Modification of Materials (Elsevier, Amsterdam, 1987), pp. 195–222.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, "Amplification in erbium-doped silicabased planar lightwave circuits," in Optical Amplifiers and their Applications, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD1.

J. C. Wright, "Up-conversion and excited state energy transfer in rare-earth doped materials," in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed., Vol. 15 in Topics in Applied Physics (Springer, Heidelberg, 1976), pp. 238–295.
[CrossRef]

Fisher Premium soda-lime glass, with composition (in mole percent) 72.2 SiO2, 14.3 Na2O, 6.4 CaO, 1.2 K2O, and small quantities of other oxides.

E. Snoeks, T. Weber, A. Cacciato, and A. Polman, "MeV ion irradiation induced creation and relaxation of mechanical stress in silica," J. Appl. Phys. (to be published).

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, and M. B. J. Diemeer, "Doping fibre-compatible ion-exchanged channel waveguides with erbium by ion implantation," in Proceedings of the European Conference on Integrated Optics, P. Roth, ed. (Institution of Electrical Engineers, London, 1993), p. 3–38.

S. Hüfner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).

Pump powers inside the waveguide were obtained by subtraction of the 2.5-dB insertion loss from the launched pump power.

Note that the influence of excited-state absorption of pump photons on n2 is small owing to the short lifetimes of the higher-lying manifolds.

σa = 1.0 × 10−21 and σe = 0.5 × 10−21 cm2 at 1.48 μm, and σa = 4.1 × 10−21 and σe = 5.0 × 10−21 cm2 at 1.536 μm, L. Cognolato, C. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, "Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique," CSELT Tech. Rep. XIX, 277–281 (1991); W. J. Miniscalco, "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

A. M. Vredenberg and J. Shmulovich, AT&T Bell Laboratories, Murray Hill, N.J. 07974-0636 (personal communication, 1993).

K. Shuto, K. Hattori, T. Kitagawa, and M. Horiguchi, "Single-mode waveguide amplifier and laser in erbiumdoped glass waveguide fabricated by PECVD," in Proceedings of the Nineteenth European Conference on Optical Communication (PTT Nederland, Amsterdam, 1993), pp. 53–56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of two-particle cooperative up-conversion. The horizontal lines represent Stark manifolds of the 4f levels of Er3+. The filled circles indicate to which of the four states the Er3+ ions are excited. The dashed arrows indicate nonradiative transitions. (a) Two ions are excited to the metastable 4I13/2 manifold. (b) Energy transfer from one Er ion to the other. (c) Remaining excited Er ion rapidly decays back to the 4I13/2 manifold.

Fig. 2
Fig. 2

Erbium concentration as a function of depth, measured by use of Rutherford backscattering spectroscopy (open circles). The average concentration in the waveguide is 0.2 at. %, corresponding to 1.4 × 1020 cm−3. For comparison a typical refractive-index profile for Na+ ↔ K+ ion-exchanged waveguides is included (solid curve). The dashed curve is a calculated normalized optical intensity profile for a wavelength of 1.5 μm in the center of the channel waveguide. The inset shows a cross-sectional view of the waveguide: the shaded area shows the Er-implanted region; the hatched area is enclosed by the surface; and the dotted ellipsoid indicates the ion-exchanged region, i.e., the waveguide.

Fig. 3
Fig. 3

Room-temperature PL spectrum of an Er-implanted soda-lime silicate glass channel waveguide (solid curve), measured with a resolution of 0.4 nm. The spectrum of the excitation laser (dotted curve) is shown on a greatly reduced scale.

Fig. 4
Fig. 4

PL decay curves following pumping to steady state by use of 1.48-μm excitation at 0.018, 0.133, and 22.6 mW in an Er-implanted soda-lime silicate channel waveguide, measured at 1.537 μm. The pump was switched off at t = 0. The luminescence signal is plotted on a logarithmic scale versus time. A power of 22.6 mW corresponds to an intensity in the waveguide of ~30 kW/cm2. A calculation according to Eq. (2), yielding C = 3.2 × 10−24 m3/s, is shown as the solid curve. The dashed curve shows a single exponential decay with τ = 7.2 ms.

Fig. 5
Fig. 5

PL intensity at λ = 1.536 μm measured as a function of pump power inside the waveguide. The highest measured power corresponds to an intensity of ~30 kW/cm2. The solid curve is a calculation based on Eq. (3); the fraction of excited Er ions that follows from the calculation is shown on the right-hand axis. For comparison the dashed curve shows a calculation using the same parameters, but with C = 0 (no upconversion).

Fig. 6
Fig. 6

Measured transmission change of a 1.536-μm signal as a function of 1.48-μm pump power in the waveguide (open circles). The solid curve is a calculation using the measured upconversion coefficient. The dotted line indicates the point at which the signal absorption rate equals the stimulated emission rate. The dashed curve shows the calculated gain curve in the absence of upconversion.

Fig. 7
Fig. 7

Transmission change as a function of signal wavelength. The pump power at 1.48 μm was 18 mW. The filled circles are measured data, and the curve is a guide for the eye.

Fig. 8
Fig. 8

Calculated gain at 1.536 μm as a function of pump power in a 3-cm-long waveguide, based on the design specifications given in the text. The waveguide loss (no Er) of 1.0 dB/cm is indicated by the arrow. The Er concentration is 0.2 at. %. The upconversion coefficient (3.2 × 10−24 m3/s) and PL lifetime (7.2 ms) were determined in Section 3. The solid curve shows the result for a 1.48-μm pump, and the dashed curve for a 980-nm pump. With 200 mW, a net gain of 3.0 dB can be achieved.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d n 2 d t = R ( 1 - n 2 ) - R n 2 - n 2 τ - ρ C n 2 2 .
n 2 ( t ) = 1 τ [ ( 1 τ n 2 ( 0 ) + ρ C ) exp ( t / τ ) - ρ C ] - 1 ,
n 2 = R + R + 1 / τ 2 ρ C { [ 1 + 4 ρ C R ( R + R + 1 / τ ) 2 ] 1 / 2 - 1 } n 2 ( 0 ) .

Metrics