Abstract

Ferroelectric domain gratings with periods of the order of an optical wavelength are induced in strontium barium niobate by photorefractive space-charge fields. We measure the Barkhausen noise in current and diffraction efficiency while optically recording domain gratings and show that the two are strongly correlated in time. Significant random depolarization occurs under high-intensity illumination. We deduce the kinetics of the domain inversion process from the shape of the current transients.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Kewitsch, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1262–1264 (1993).
    [Crossref] [PubMed]
  2. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
    [Crossref]
  3. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
    [Crossref] [PubMed]
  4. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [Crossref]
  5. Y. Qiao, S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
    [Crossref] [PubMed]
  6. M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in Srx Ba1–x Nb2O6by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett. 62, 2619–2621 (1993).
    [Crossref]
  7. M. Horowitz, A. Bekker, and B. Fischer, “Image and hologram fixing method with Srx Ba1–x Nb2O6crystals,” Opt. Lett. 18, 1964–1966 (1993).
    [Crossref] [PubMed]
  8. F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
    [Crossref]
  9. V. M. Rudyak, “The Barkhausen effect,” Sov. Phys. Usp. 13, 461–479 (1971).
    [Crossref]
  10. R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
    [Crossref]
  11. A. G. Chynoweth, “Barkhausen pulses in barium titanate,” Phys. Rev. 110, 1316–1332 (1958).
    [Crossref]
  12. V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
    [Crossref]
  13. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
    [Crossref]
  14. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
    [Crossref] [PubMed]
  15. R. C. Miller, “Some experiments on the motion of 180° domain walls in BaTiO3,” Phys. Rev. 111, 736–739 (1958).
    [Crossref]
  16. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  17. V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
    [Crossref]
  18. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [Crossref]
  19. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-electromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
    [Crossref]
  20. J. A. Hooton and W. J. Merz, “Etch patterns and ferroelectric domains in BaTiO3single crystals,” Phys. Rev. 98, 409–413 (1955).
    [Crossref]
  21. V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).
  22. J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Wiley-Interscience, New York, 1993).

1994 (4)

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
[Crossref]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

1993 (6)

1990 (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

1978 (1)

V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
[Crossref]

1973 (1)

V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

1971 (1)

V. M. Rudyak, “The Barkhausen effect,” Sov. Phys. Usp. 13, 461–479 (1971).
[Crossref]

1958 (2)

A. G. Chynoweth, “Barkhausen pulses in barium titanate,” Phys. Rev. 110, 1316–1332 (1958).
[Crossref]

R. C. Miller, “Some experiments on the motion of 180° domain walls in BaTiO3,” Phys. Rev. 111, 736–739 (1958).
[Crossref]

1955 (1)

J. A. Hooton and W. J. Merz, “Etch patterns and ferroelectric domains in BaTiO3single crystals,” Phys. Rev. 98, 409–413 (1955).
[Crossref]

1949 (1)

R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
[Crossref]

Ahearn, A. J.

R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
[Crossref]

Bekker, A.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in Srx Ba1–x Nb2O6by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett. 62, 2619–2621 (1993).
[Crossref]

M. Horowitz, A. Bekker, and B. Fischer, “Image and hologram fixing method with Srx Ba1–x Nb2O6crystals,” Opt. Lett. 18, 1964–1966 (1993).
[Crossref] [PubMed]

Bendat, J. S.

J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Wiley-Interscience, New York, 1993).

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

Chynoweth, A. G.

A. G. Chynoweth, “Barkhausen pulses in barium titanate,” Phys. Rev. 110, 1316–1332 (1958).
[Crossref]

Cudney, R. S.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Fischer, B.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in Srx Ba1–x Nb2O6by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett. 62, 2619–2621 (1993).
[Crossref]

M. Horowitz, A. Bekker, and B. Fischer, “Image and hologram fixing method with Srx Ba1–x Nb2O6crystals,” Opt. Lett. 18, 1964–1966 (1993).
[Crossref] [PubMed]

Fousek, J.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Fridkin, V. M.

V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
[Crossref]

Garrett, M. H.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Günter, P.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Hooton, J. A.

J. A. Hooton and W. J. Merz, “Etch patterns and ferroelectric domains in BaTiO3single crystals,” Phys. Rev. 98, 409–413 (1955).
[Crossref]

Horowitz, M.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in Srx Ba1–x Nb2O6by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett. 62, 2619–2621 (1993).
[Crossref]

M. Horowitz, A. Bekker, and B. Fischer, “Image and hologram fixing method with Srx Ba1–x Nb2O6crystals,” Opt. Lett. 18, 1964–1966 (1993).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Kahmann, F.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
[Crossref]

Kewitsch, A. S.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1262–1264 (1993).
[Crossref] [PubMed]

Kovalevich, V. I.

V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
[Crossref]

Kudzin, A. Y.

V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).

McKay, K. G.

R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
[Crossref]

Merz, W. J.

J. A. Hooton and W. J. Merz, “Etch patterns and ferroelectric domains in BaTiO3single crystals,” Phys. Rev. 98, 409–413 (1955).
[Crossref]

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

Miller, R. C.

R. C. Miller, “Some experiments on the motion of 180° domain walls in BaTiO3,” Phys. Rev. 111, 736–739 (1958).
[Crossref]

Neurgaonkar, R. R.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Y. Qiao, S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1262–1264 (1993).
[Crossref] [PubMed]

Newton, R. R.

R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
[Crossref]

Orlov, S.

Panchenko, T. V.

V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).

Pankrath, R.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
[Crossref]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

Piersol, A. G.

J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Wiley-Interscience, New York, 1993).

Psaltis, D.

Qiao, Y.

Rudyak, V. M.

V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).

V. M. Rudyak, “The Barkhausen effect,” Sov. Phys. Usp. 13, 461–479 (1971).
[Crossref]

Rupp, R. A.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
[Crossref]

Rytz, D.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Salamo, G. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Segev, M.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1262–1264 (1993).
[Crossref] [PubMed]

Sharp, E. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

Shuvalov, L. A.

V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
[Crossref]

Sokolov, I. A.

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-electromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[Crossref]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

Stepanov, S. I.

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-electromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[Crossref]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

Towe, T. W.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

Volk, T. R.

V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
[Crossref]

Yariv, A.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1262–1264 (1993).
[Crossref] [PubMed]

Zgonik, M.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

Appl. Phys. Lett. (4)

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Tunable quasi-phase matching using dynamic domain gratings induced by photorefractive space charge fields,” Appl. Phys. Lett. 64, 1023–1025 (1994).
[Crossref]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in Srx Ba1–x Nb2O6by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett. 62, 2619–2621 (1993).
[Crossref]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Photorefractive and domain gratings in barium titanate,” Appl. Phys. Lett. 63, 3399–3401 (1993).
[Crossref]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6–10 (1994).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (4)

R. C. Miller, “Some experiments on the motion of 180° domain walls in BaTiO3,” Phys. Rev. 111, 736–739 (1958).
[Crossref]

J. A. Hooton and W. J. Merz, “Etch patterns and ferroelectric domains in BaTiO3single crystals,” Phys. Rev. 98, 409–413 (1955).
[Crossref]

R. R. Newton, A. J. Ahearn, and K. G. McKay, “Observation of the ferroelectric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949).
[Crossref]

A. G. Chynoweth, “Barkhausen pulses in barium titanate,” Phys. Rev. 110, 1316–1332 (1958).
[Crossref]

Phys. Rev. Lett. (2)

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Phys. Status Solidi (a) (1)

V. I. Kovalevich, L. A. Shuvalov, and T. R. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals,” Phys. Status Solidi (a) 45, 249–252 (1978).
[Crossref]

Sov. Phys. Solid State (1)

V. M. Rudyak, A. Y. Kudzin, and T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).

Sov. Phys. Usp. (1)

V. M. Rudyak, “The Barkhausen effect,” Sov. Phys. Usp. 13, 461–479 (1971).
[Crossref]

Other (3)

J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Wiley-Interscience, New York, 1993).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Theoretical model to relate the measured Barkhausen current to the domain switching dynamics.

Fig. 2
Fig. 2

Decay of pyroelectric fields in the dark and under illumination. The dielectric relaxation time of Cr-doped SBN:75 at 45 °C is 8 s at I0 = 1 W cm−2.

Fig. 3
Fig. 3

Experimental setup for writing domain gratings and measuring both the diffraction efficiency and the current across the crystal.

Fig. 4
Fig. 4

Noise in current (50 Hz) induced by an oscillating space-charge field (modulation in diffraction ~0.5%). The current lags diffraction by 0.78 ms (SBN:61, I0 ~ 1 W cm−2, T = 22 °C, thermal steady state).

Fig. 5
Fig. 5

(a) Pyroelectric and Barkhausen current caused by optical heating (SBN:75, I0 ~ 20 W cm−2, Tambient = 22 °C, before thermal steady state), (b) etched a face of a crystal following optical exposure.

Fig. 6
Fig. 6

Noise in current (bottom) and diffraction efficiency (%, top) as a photorefractive space-charge grating is recorded (SBN:75, I0 ~ 1 W cm−2, T = 30 °C, thermal steady state).

Fig. 7
Fig. 7

Barkhausen current events: single-domain events of (a) type I and (b) type II and (c) multiple-domain switching event (SBN:75, I0 ~ 8 W cm−2, Tambient = 22 °C, before thermal steady state).

Fig. 8
Fig. 8

Intensity dependence of diffraction efficiency noise (SBN:75, Tambient = 22 °C, before thermal steady state).

Fig. 9
Fig. 9

Long-time temporal correlation of current and diffraction efficiency noise (SBN:75, I0 ~ 20 W cm−2, Tambient = 22°C, before thermal steady state).

Fig. 10
Fig. 10

Correlation coefficient function of current and diffraction efficiency (for data from t = 64 to t = 80 s in Fig. 9).

Fig. 11
Fig. 11

Two characteristic noise events in current and diffraction efficiency. The first event is characteristic of a fluctuation in the space-charge field initiating domain reversal. The second event is characteristic of noise in diffraction efficiency induced by domain switching (SBN:75, I0 ~ 8 W cm−2, Tambient = 22 °C, before thermal steady state).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ρ b = - · P s ,
σ b = P s · n ^ .
Q A = - q f b L ,             Q B = - q f q L ,
i ( t ) = t ( Q B - Q A ) = - q f 2 L a t .
Q A = - q d L ,             Q B = q d L ,
i ( t ) = d d t ( Q B - Q A ) = 2 L ( d q t + q d t ) .
q b = Δ P A = 2 P d A ,
i ( t ) = 4 L P d A d ( ln A t + ln d t + ln P d t ) + 2 L ( d q f t + q f d t ) .
τ diel = σ d + I σ ph ,
V = Q tot L 6 P d .
ρ i d ( τ ) = R i d ( τ ) - μ i μ d { [ R i i ( 0 ) - μ i 2 ] [ R d d ( 0 ) - μ d 2 ] } 1 / 2 ,
R i d ( τ ) = lim T 1 T 0 T i ( t ) d ( t - τ ) d t .
R i i ( τ ) = lim T 1 T 0 T i ( t ) i ( t - τ ) d t ,
R d d ( τ ) = lim T 1 T 0 T d ( t ) d ( t - τ ) d t .

Metrics