Abstract

We report the first demonstration to our knowledge of atmospheric compensation at extended ranges by stimulated Brillouin-scattering phase conjugation. With a field-of-view aperture product of 175 mm mrad, we studied horizontal ranges up to 6 km at a 2.5-m height above ground, with the refractive-index structure parameter Cn2 as large as 10−13 m−2/3. Compensation was achieved at all ranges, consistent with the turbulence-resolution capability of the 10-cm system aperture. The system was driven by frequency-doubled Nd:YAG lasers operating with ~10-ns pulses that were Raman shifted in gaseous hydrogen to the 683-nm operating wavelength. Raman amplification overcame as much as 85 dB of range and internal losses.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wang and C. R. Giuliano, “Correction of phase distortions via nonlinear optical techniques,” in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1977), pp. 830–840.
  2. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978).
    [CrossRef] [PubMed]
  3. V. Wang, U.S. patent4,005,935 (February13, 1977).
  4. R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, Mass., 1991).
  5. B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).
  6. Yu. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8, 359–364 (1978).
    [CrossRef]
  7. Yu. I. Kruzhilin, “Enhancement of a laser amplifier output by suppression of self-focusing,” Sov. Tech. Phys. Lett. 4, 72–75 (1978).
  8. N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).
  9. I. Liberman, “Application of phase conjugation to CO2fusion lasers,” in Los Alamos Conference on Optics ’79, D. H. Liebenberg, ed., Proc. Soc. Photo-Opt. Instrum. Eng.190, 426–429 (1979).
    [CrossRef]
  10. V. V. Shkunov and B. Ya. Zel’dovich, “Optical phase conjugation,” Sci. Am.54–59 (December1985).
    [CrossRef]
  11. R. C. Lind and G. J. Dunning, “Demonstration of real-time compensation of atmospheric turbulence by nonlinear phase conjugation,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington D.C., 1983), paper ThC5; “Real-time compensation of atmospheric turbulence by nonlinear phase conjugation demonstrated,” Laser Focus/Electro-Opt. 19(9), 14 (1983).
  12. R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).
  13. A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
    [CrossRef]
  14. V. V. Ragulskii, “Wavefront inversion of weak beams in stimulated scattering,” Sov. Tech. Phys. Lett. 5, 100–103 (1979).
  15. N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
    [CrossRef]
  16. N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).
  17. N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
    [CrossRef]
  18. M. D. Skeldon, P. Narum, and R. W. Boyd, “Non-frequency-shifted, high fidelity phase conjugation with aberrated pump waves by Brillouin-enhanced four-wave mixing,” Opt. Lett. 12, 343–345 (1987).
    [CrossRef] [PubMed]
  19. P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14, 236–238 (1989).
    [CrossRef] [PubMed]
  20. J. R. Ackerman and P. S. Lebow, “Efficient phase conjugation using Brillouin enhanced four-wave mixing coupled with a stimulated Brillouin scattering amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 44.
  21. K. D. Ridley and A. M. Scott, “High reflectivity phase conjugation using Brillouin preamplification,” Opt. Lett. 15, 777–779 (1990).
    [CrossRef] [PubMed]
  22. O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
    [CrossRef]
  23. J. R. Ackerman and P. S. Lebow, “Improved performance from noncollinear pumping in a high-reflectivity Brillouin-enhanced four-wave mixing phase conjugator,” IEEE J. Quantum Electron. 25, 479–483 (1989).
    [CrossRef]
  24. A. Z. Matveev and G. A. Pasmanik, “Noise in a wavefront-reversal system with a preliminary amplifier,” Sov. J. Quantum Electron. 14, 187–195 (1984).
    [CrossRef]
  25. A. Z. Matveev, “Noise of four-wave hypersonic wavefront-reversing mirrors under absolute instability conditions,” Sov. J. Quantum Electron. 15, 783–789 (1985).
    [CrossRef]
  26. A. Z. Matveev, “Noise of thermal and hypersonic four-wave reversing mirrors and influence of wave mismatch,” Sov. J. Quantum Electron. 17, 466–476 (1987).
    [CrossRef]
  27. V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
    [CrossRef]
  28. N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).
  29. O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
    [CrossRef]
  30. O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
    [CrossRef]
  31. T. Honda and H. Matsumoto, “Effects of BaTiO3self-pumped phase-conjugation in 400-m atmospheric optical path,” Jpn. J. Appl. Phys. Part 1 30, 399–402 (1991).
  32. Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).
  33. Y. A. Kravtsov, “Propagation of electromagnetic waves through a turbulent atmosphere,” Rep. Prog. Phys. 55, 39–113 (1992).
    [CrossRef]
  34. A. A. Betin and O. V. Mitropolsky, “Thermal nonlinearity for phase conjugation of IR laser radiation,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 290.
  35. M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).
  36. D. A. Rockwell and H. Bruesselbach, “Wavelength conversion by stimulated Raman scattering,” in Physics of New Laser Sources, N. B. Abraham, ed. (Plenum, New York, 1985).
  37. S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).
  38. J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
    [CrossRef]
  39. D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–40 (1988).
    [CrossRef]
  40. A. J. Berry, D. C. Hanna, and C. G. Sawyers, “High power, single frequency operation of a Q-switched TEM00mode Nd:YAG laser,” in Quantum Electronics and Electro-Optics, P. L. Knight, ed. (Wiley, London, 1983), pp. 37ff.
  41. Lightwave Electronics Inc. Model S-100.
  42. H. Bruesselbach, U.S. patent4,734,911 (March29, 1988).
  43. J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.
  44. H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.
  45. J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990).
    [CrossRef]
  46. J. J. Ottusch, M. S. Mangir, and D. A. Rockwell, “Efficient anti-Stokes Raman conversion by four-wave mixing in gases,” J. Opt. Soc. Am. B 8, 68–77 (1991).
    [CrossRef]
  47. W. P. Brown, Hughes Research Laboratories (personal communication).
  48. G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979).
    [CrossRef] [PubMed]
  49. D. L. Fried, “Propagation of a spherical wave in a turbulent medium,” J. Opt. Soc. Am. 57, 175–180 (1967).
    [CrossRef]
  50. D. L. Fried and J. B. Seidman, “Laser beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 181–186 (1967).
    [CrossRef]
  51. D. A. Rockwell and D. N. Garrett, “A new system for accurate laser intensity profile analysis,” in Advances in Laser Engineering, M. L. Stitch and E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 187–191 (1977).
    [CrossRef]
  52. R. Emblich, White Sands Missile Range, New Mex. (personal communication, 1993).
  53. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 398.
  54. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.
  55. J. W. Strohbehn, ed., Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978), p. 23.
  56. A. M. Scott, D. E. Watkins, and P. Tapster, “Gain and noise characteristics of a Brillouin amplifier and their dependence on the spatial structure of the pump beam,” J. Opt. Soc. Am. B 7, 929–935 (1990).
    [CrossRef]
  57. N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
    [CrossRef]
  58. H. Bruesselbach, “High gain Nd:YAG amplifier,” in Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), p. 337.
    [CrossRef]
  59. M. D. Levenson and K. Chang, “Image projection with nonlinear optics,” IBM J. Res. Dev. 26, 160–170 (1982).
    [CrossRef]
  60. D. M. Pepper, “Applications of optical phase conjugation,” Sci. Am.74–83 (January1986).
    [CrossRef]
  61. O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].
  62. O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
    [CrossRef]

1992 (2)

Y. A. Kravtsov, “Propagation of electromagnetic waves through a turbulent atmosphere,” Rep. Prog. Phys. 55, 39–113 (1992).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
[CrossRef]

1991 (3)

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

T. Honda and H. Matsumoto, “Effects of BaTiO3self-pumped phase-conjugation in 400-m atmospheric optical path,” Jpn. J. Appl. Phys. Part 1 30, 399–402 (1991).

J. J. Ottusch, M. S. Mangir, and D. A. Rockwell, “Efficient anti-Stokes Raman conversion by four-wave mixing in gases,” J. Opt. Soc. Am. B 8, 68–77 (1991).
[CrossRef]

1990 (5)

J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990).
[CrossRef]

A. M. Scott, D. E. Watkins, and P. Tapster, “Gain and noise characteristics of a Brillouin amplifier and their dependence on the spatial structure of the pump beam,” J. Opt. Soc. Am. B 7, 929–935 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

K. D. Ridley and A. M. Scott, “High reflectivity phase conjugation using Brillouin preamplification,” Opt. Lett. 15, 777–779 (1990).
[CrossRef] [PubMed]

1989 (6)

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
[CrossRef]

J. R. Ackerman and P. S. Lebow, “Improved performance from noncollinear pumping in a high-reflectivity Brillouin-enhanced four-wave mixing phase conjugator,” IEEE J. Quantum Electron. 25, 479–483 (1989).
[CrossRef]

P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14, 236–238 (1989).
[CrossRef] [PubMed]

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

1988 (3)

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–40 (1988).
[CrossRef]

1987 (2)

A. Z. Matveev, “Noise of thermal and hypersonic four-wave reversing mirrors and influence of wave mismatch,” Sov. J. Quantum Electron. 17, 466–476 (1987).
[CrossRef]

M. D. Skeldon, P. Narum, and R. W. Boyd, “Non-frequency-shifted, high fidelity phase conjugation with aberrated pump waves by Brillouin-enhanced four-wave mixing,” Opt. Lett. 12, 343–345 (1987).
[CrossRef] [PubMed]

1986 (2)

V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
[CrossRef]

D. M. Pepper, “Applications of optical phase conjugation,” Sci. Am.74–83 (January1986).
[CrossRef]

1985 (2)

A. Z. Matveev, “Noise of four-wave hypersonic wavefront-reversing mirrors under absolute instability conditions,” Sov. J. Quantum Electron. 15, 783–789 (1985).
[CrossRef]

V. V. Shkunov and B. Ya. Zel’dovich, “Optical phase conjugation,” Sci. Am.54–59 (December1985).
[CrossRef]

1984 (2)

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

A. Z. Matveev and G. A. Pasmanik, “Noise in a wavefront-reversal system with a preliminary amplifier,” Sov. J. Quantum Electron. 14, 187–195 (1984).
[CrossRef]

1982 (1)

M. D. Levenson and K. Chang, “Image projection with nonlinear optics,” IBM J. Res. Dev. 26, 160–170 (1982).
[CrossRef]

1980 (1)

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

1979 (3)

V. V. Ragulskii, “Wavefront inversion of weak beams in stimulated scattering,” Sov. Tech. Phys. Lett. 5, 100–103 (1979).

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979).
[CrossRef] [PubMed]

1978 (4)

V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978).
[CrossRef] [PubMed]

Yu. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8, 359–364 (1978).
[CrossRef]

Yu. I. Kruzhilin, “Enhancement of a laser amplifier output by suppression of self-focusing,” Sov. Tech. Phys. Lett. 4, 72–75 (1978).

N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).

1972 (1)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

1967 (2)

Ackerman, J. R.

J. R. Ackerman and P. S. Lebow, “Improved performance from noncollinear pumping in a high-reflectivity Brillouin-enhanced four-wave mixing phase conjugator,” IEEE J. Quantum Electron. 25, 479–483 (1989).
[CrossRef]

P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14, 236–238 (1989).
[CrossRef] [PubMed]

J. R. Ackerman and P. S. Lebow, “Efficient phase conjugation using Brillouin enhanced four-wave mixing coupled with a stimulated Brillouin scattering amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Andreev, N. F.

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Basov, N. G.

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

Berry, A. J.

A. J. Berry, D. C. Hanna, and C. G. Sawyers, “High power, single frequency operation of a Q-switched TEM00mode Nd:YAG laser,” in Quantum Electronics and Electro-Optics, P. L. Knight, ed. (Wiley, London, 1983), pp. 37ff.

Bespalov, V. I.

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Betin, A. A.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

A. A. Betin and O. V. Mitropolsky, “Thermal nonlinearity for phase conjugation of IR laser radiation,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 290.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 398.

Boyd, R. W.

Brown, W.

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

Brown, W. P.

W. P. Brown, Hughes Research Laboratories (personal communication).

Bruesselbach, H.

H. Bruesselbach, “High gain Nd:YAG amplifier,” in Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), p. 337.
[CrossRef]

D. A. Rockwell and H. Bruesselbach, “Wavelength conversion by stimulated Raman scattering,” in Physics of New Laser Sources, N. B. Abraham, ed. (Plenum, New York, 1985).

H. Bruesselbach, U.S. patent4,734,911 (March29, 1988).

Bruesselbach, H. W.

H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.

Brusselbach, H. W.

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

Chang, K.

M. D. Levenson and K. Chang, “Image projection with nonlinear optics,” IBM J. Res. Dev. 26, 160–170 (1982).
[CrossRef]

Ding-Wen, Zhou

Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).

Dunning, G. J.

R. C. Lind and G. J. Dunning, “Demonstration of real-time compensation of atmospheric turbulence by nonlinear phase conjugation,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington D.C., 1983), paper ThC5; “Real-time compensation of atmospheric turbulence by nonlinear phase conjugation demonstrated,” Laser Focus/Electro-Opt. 19(9), 14 (1983).

R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).

Dvoretskii, M. A.

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Dvoretsky, M. A.

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

Emblich, R.

R. Emblich, White Sands Missile Range, New Mex. (personal communication, 1993).

Faizullov, F. S.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

Fried, D. L.

Gagliardi, R. M.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.

Garrett, D. N.

D. A. Rockwell and D. N. Garrett, “A new system for accurate laser intensity profile analysis,” in Advances in Laser Engineering, M. L. Stitch and E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 187–191 (1977).
[CrossRef]

Giuliano, C. R.

V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978).
[CrossRef] [PubMed]

V. Wang and C. R. Giuliano, “Correction of phase distortions via nonlinear optical techniques,” in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1977), pp. 830–840.

Gregor, E.

J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.

Hanna, D. C.

A. J. Berry, D. C. Hanna, and C. G. Sawyers, “High power, single frequency operation of a Q-switched TEM00mode Nd:YAG laser,” in Quantum Electronics and Electro-Optics, P. L. Knight, ed. (Wiley, London, 1983), pp. 37ff.

Honda, T.

T. Honda and H. Matsumoto, “Effects of BaTiO3self-pumped phase-conjugation in 400-m atmospheric optical path,” Jpn. J. Appl. Phys. Part 1 30, 399–402 (1991).

Jensen, S. M.

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

Jones, D. C.

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

Karp, S.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.

Kiselev, A. M.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Kotov, A. V.

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

Kravtsov, Y. A.

Y. A. Kravtsov, “Propagation of electromagnetic waves through a turbulent atmosphere,” Rep. Prog. Phys. 55, 39–113 (1992).
[CrossRef]

Kruzhilin, Yu. I.

Yu. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8, 359–364 (1978).
[CrossRef]

Yu. I. Kruzhilin, “Enhancement of a laser amplifier output by suppression of self-focusing,” Sov. Tech. Phys. Lett. 4, 72–75 (1978).

Kulagin, O. V.

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
[CrossRef]

Lebow, P. S.

J. R. Ackerman and P. S. Lebow, “Improved performance from noncollinear pumping in a high-reflectivity Brillouin-enhanced four-wave mixing phase conjugator,” IEEE J. Quantum Electron. 25, 479–483 (1989).
[CrossRef]

P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14, 236–238 (1989).
[CrossRef] [PubMed]

J. R. Ackerman and P. S. Lebow, “Efficient phase conjugation using Brillouin enhanced four-wave mixing coupled with a stimulated Brillouin scattering amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Levenson, M. D.

M. D. Levenson and K. Chang, “Image projection with nonlinear optics,” IBM J. Res. Dev. 26, 160–170 (1982).
[CrossRef]

Liberman, I.

I. Liberman, “Application of phase conjugation to CO2fusion lasers,” in Los Alamos Conference on Optics ’79, D. H. Liebenberg, ed., Proc. Soc. Photo-Opt. Instrum. Eng.190, 426–429 (1979).
[CrossRef]

Lind, R. C.

R. C. Lind and G. J. Dunning, “Demonstration of real-time compensation of atmospheric turbulence by nonlinear phase conjugation,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington D.C., 1983), paper ThC5; “Real-time compensation of atmospheric turbulence by nonlinear phase conjugation demonstrated,” Laser Focus/Electro-Opt. 19(9), 14 (1983).

R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

Makarov, A. I.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Mangir, M. S.

J. J. Ottusch, M. S. Mangir, and D. A. Rockwell, “Efficient anti-Stokes Raman conversion by four-wave mixing in gases,” J. Opt. Soc. Am. B 8, 68–77 (1991).
[CrossRef]

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

Matsumoto, H.

T. Honda and H. Matsumoto, “Effects of BaTiO3self-pumped phase-conjugation in 400-m atmospheric optical path,” Jpn. J. Appl. Phys. Part 1 30, 399–402 (1991).

Matthews, S.

J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.

Matveev, A. Z.

A. Z. Matveev, “Noise of thermal and hypersonic four-wave reversing mirrors and influence of wave mismatch,” Sov. J. Quantum Electron. 17, 466–476 (1987).
[CrossRef]

V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
[CrossRef]

A. Z. Matveev, “Noise of four-wave hypersonic wavefront-reversing mirrors under absolute instability conditions,” Sov. J. Quantum Electron. 15, 783–789 (1985).
[CrossRef]

A. Z. Matveev and G. A. Pasmanik, “Noise in a wavefront-reversal system with a preliminary amplifier,” Sov. J. Quantum Electron. 14, 187–195 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Mikhailov, S. I.

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

Minden, M.

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

Mitropolskii, O. V.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Mitropolsky, O. V.

A. A. Betin and O. V. Mitropolsky, “Thermal nonlinearity for phase conjugation of IR laser radiation,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 290.

Moran, S. E.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.

Narum, P.

O’Meara, T. R.

R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).

Ottusch, J. J.

J. J. Ottusch, M. S. Mangir, and D. A. Rockwell, “Efficient anti-Stokes Raman conversion by four-wave mixing in gases,” J. Opt. Soc. Am. B 8, 68–77 (1991).
[CrossRef]

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

Palombo, K.

J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.

Pasmanik, G. A.

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
[CrossRef]

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
[CrossRef]

A. Z. Matveev and G. A. Pasmanik, “Noise in a wavefront-reversal system with a preliminary amplifier,” Sov. J. Quantum Electron. 14, 187–195 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Pasmannik [sic], G. A.

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

Pepper, D. M.

D. M. Pepper, “Applications of optical phase conjugation,” Sci. Am.74–83 (January1986).
[CrossRef]

Pilipetskii, N. F.

N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).

Popovichev, V. I.

N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

Potemkin, A. K.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Potlov, P. B.

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

Ragulskii, V. V.

V. V. Ragulskii, “Wavefront inversion of weak beams in stimulated scattering,” Sov. Tech. Phys. Lett. 5, 100–103 (1979).

N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

Razenshtein, P. S.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Ridley, K. D.

K. D. Ridley and A. M. Scott, “High reflectivity phase conjugation using Brillouin preamplification,” Opt. Lett. 15, 777–779 (1990).
[CrossRef] [PubMed]

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

Rockwell, D. A.

J. J. Ottusch, M. S. Mangir, and D. A. Rockwell, “Efficient anti-Stokes Raman conversion by four-wave mixing in gases,” J. Opt. Soc. Am. B 8, 68–77 (1991).
[CrossRef]

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–40 (1988).
[CrossRef]

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

D. A. Rockwell and H. Bruesselbach, “Wavelength conversion by stimulated Raman scattering,” in Physics of New Laser Sources, N. B. Abraham, ed. (Plenum, New York, 1985).

D. A. Rockwell and D. N. Garrett, “A new system for accurate laser intensity profile analysis,” in Advances in Laser Engineering, M. L. Stitch and E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 187–191 (1977).
[CrossRef]

H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.

Sawyers, C. G.

A. J. Berry, D. C. Hanna, and C. G. Sawyers, “High power, single frequency operation of a Q-switched TEM00mode Nd:YAG laser,” in Quantum Electronics and Electro-Optics, P. L. Knight, ed. (Wiley, London, 1983), pp. 37ff.

Scott, A. M.

Seidman, J. B.

Shilov, A. A.

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Shkunov, V. V.

V. V. Shkunov and B. Ya. Zel’dovich, “Optical phase conjugation,” Sci. Am.54–59 (December1985).
[CrossRef]

Skeldon, M. D.

Smirnov, M. G.

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

Sorce, J.

J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.

Stotts, L. B.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.

Tapster, P.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, Mass., 1991).

Valley, G. C.

G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979).
[CrossRef] [PubMed]

H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.

R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).

Wandzura, S. M.

H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.

Wang, V.

V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978).
[CrossRef] [PubMed]

V. Wang and C. R. Giuliano, “Correction of phase distortions via nonlinear optical techniques,” in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1977), pp. 830–840.

V. Wang, U.S. patent4,005,935 (February13, 1977).

Wang, Xiao-Chun

Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).

Watkins, D. E.

White, J. O.

J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990).
[CrossRef]

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 398.

Yi-Mo, Zhang

Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).

Zel’dovich, B. Ya.

V. V. Shkunov and B. Ya. Zel’dovich, “Optical phase conjugation,” Sci. Am.54–59 (December1985).
[CrossRef]

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

Zhukov, Ye. A.

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Zubarev, I. G.

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

Appl. Opt. (1)

Bull. Acad. Sci. USSR Phys. Ser. (1)

N. F. Andreev, V. I. Bespalov, A. A. Betin, M. A. Dvoretskii, Ye. A. Zhukov, A. M. Kiselev, A. I. Makarov, O. V. Mitropolskii, G. A. Pasmanik, A. K. Potemkin, P. S. Razenshtein, and A. A. Shilov, “Hypersound phase-conjugate mirrors and outlook for using them to produce adaptive laser systems,” Bull. Acad. Sci. USSR Phys. Ser. 48, 1619–625 (1984); N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmanik, “Four-wave hypersonic reversing mirrors in the saturation regime,” Sov. J. Quantum Electron. 14, 999–1002 (1984).
[CrossRef]

Chin. J. Phys. (1)

Xiao-Chun Wang, Zhou Ding-Wen, and Zhang Yi-Mo, “Real-time compensation of atmospheric turbulence by nonlinear optical phase conjugation,” Chin. J. Phys. 38, 466–70 (1989).

IBM J. Res. Dev. (1)

M. D. Levenson and K. Chang, “Image projection with nonlinear optics,” IBM J. Res. Dev. 26, 160–170 (1982).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–40 (1988).
[CrossRef]

N. F. Andreev, V. I. Bespalov, M. A. Dvoretsky, and G. A. Pasmanik, “Phase conjugation of single photons,” IEEE J. Quantum Electron. 25, 346–350 (1989).
[CrossRef]

J. R. Ackerman and P. S. Lebow, “Improved performance from noncollinear pumping in a high-reflectivity Brillouin-enhanced four-wave mixing phase conjugator,” IEEE J. Quantum Electron. 25, 479–483 (1989).
[CrossRef]

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (3)

JETP Lett. (3)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragulskii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett. 15, 109–112 (1972).

N. F. Pilipetskii, V. I. Popovichev, and V. V. Ragulskii, “Concentration of light by inverting its wavefront,” JETP Lett. 27, 585–587 (1978).

N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” JETP Lett. 32, 625–629 (1980).

Jpn. J. Appl. Phys. Part 1 (1)

T. Honda and H. Matsumoto, “Effects of BaTiO3self-pumped phase-conjugation in 400-m atmospheric optical path,” Jpn. J. Appl. Phys. Part 1 30, 399–402 (1991).

Kvantovaya Elektron. (Moscow) (1)

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Some applications of a high-sensitivity optical projection system in physical experiments,” Kvantovaya Elektron. (Moscow) 18, 1131–1134 (1991) [Sov. J. Quantum Electron. 21, 1024–1027 (1991)].

Opt. Lett. (4)

Radiophys. Quantum Electron. (1)

V. I. Bespalov, A. Z. Matveev, and G. A. Pasmanik, “Limiting sensitivity of a stimulated-Brillouin-scattering amplifier and a four-wave hypersonic phase-conjugating mirror,” Radiophys. Quantum Electron. 29, 1080–1094 (1986).
[CrossRef]

Rep. Prog. Phys. (1)

Y. A. Kravtsov, “Propagation of electromagnetic waves through a turbulent atmosphere,” Rep. Prog. Phys. 55, 39–113 (1992).
[CrossRef]

Sci. Am. (2)

V. V. Shkunov and B. Ya. Zel’dovich, “Optical phase conjugation,” Sci. Am.54–59 (December1985).
[CrossRef]

D. M. Pepper, “Applications of optical phase conjugation,” Sci. Am.74–83 (January1986).
[CrossRef]

Sov. J. Quantum Electron. (8)

Yu. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8, 359–364 (1978).
[CrossRef]

N. G. Basov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, and M. G. Smirnov, “Small signal wavefront reversal in non-threshold reflection from a Brillouin mirror,” Sov. J. Quantum Electron. 9, 237–239 (1979).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive projection system with a four-wave phase-conjugating mirror and an optical quantum amplifier,” Sov. J. Quantum Electron. 20, 292–295 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, “Threshold sensitivity of a projection optical system based on the brightness amplifier with a four-wave hypersonic phase-conjugating mirror under absolute instability conditions,” Sov. J. Quantum Electron. 20, 1395–1397 (1990).
[CrossRef]

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Highly sensitive phase-conjugate mirrors with a large number of resolution elements and their potential applications in projection optics,” Sov. J. Quantum Electron. 19, 902–906 (1989).
[CrossRef]

A. Z. Matveev and G. A. Pasmanik, “Noise in a wavefront-reversal system with a preliminary amplifier,” Sov. J. Quantum Electron. 14, 187–195 (1984).
[CrossRef]

A. Z. Matveev, “Noise of four-wave hypersonic wavefront-reversing mirrors under absolute instability conditions,” Sov. J. Quantum Electron. 15, 783–789 (1985).
[CrossRef]

A. Z. Matveev, “Noise of thermal and hypersonic four-wave reversing mirrors and influence of wave mismatch,” Sov. J. Quantum Electron. 17, 466–476 (1987).
[CrossRef]

Sov. Phys. JETP (1)

N. F. Andreev, V. I. Bespalov, M. A. Dvoretskii, and G. A. Pasmannik [sic], “Phase conjugation of single photons,” Sov. Phys. JETP 67, 2216–2218 (1988).

Sov. Phys. Usp. (1)

O. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, “Amplification and phase conjugation of weak signals,” Sov. Phys. Usp. 35, 506–519 (1992).
[CrossRef]

Sov. Tech. Phys. Lett. (2)

V. V. Ragulskii, “Wavefront inversion of weak beams in stimulated scattering,” Sov. Tech. Phys. Lett. 5, 100–103 (1979).

Yu. I. Kruzhilin, “Enhancement of a laser amplifier output by suppression of self-focusing,” Sov. Tech. Phys. Lett. 4, 72–75 (1978).

Other (23)

V. Wang, U.S. patent4,005,935 (February13, 1977).

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, Mass., 1991).

R. C. Lind and G. J. Dunning, “Demonstration of real-time compensation of atmospheric turbulence by nonlinear phase conjugation,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington D.C., 1983), paper ThC5; “Real-time compensation of atmospheric turbulence by nonlinear phase conjugation demonstrated,” Laser Focus/Electro-Opt. 19(9), 14 (1983).

R. C. Lind, G. J. Dunning, T. R. O’Meara, and G. C. Valley, “Adaptive pointing investigation,” (Wright Laboratories, Dayton, Ohio, 1983).

I. Liberman, “Application of phase conjugation to CO2fusion lasers,” in Los Alamos Conference on Optics ’79, D. H. Liebenberg, ed., Proc. Soc. Photo-Opt. Instrum. Eng.190, 426–429 (1979).
[CrossRef]

V. Wang and C. R. Giuliano, “Correction of phase distortions via nonlinear optical techniques,” in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1977), pp. 830–840.

J. R. Ackerman and P. S. Lebow, “Efficient phase conjugation using Brillouin enhanced four-wave mixing coupled with a stimulated Brillouin scattering amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 44.

A. A. Betin and O. V. Mitropolsky, “Thermal nonlinearity for phase conjugation of IR laser radiation,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 290.

M. S. Mangir, J. O. White, J. J. Ottusch, H. W. Brusselbach, and D. A. Rockwell, “Tunable high energy Raman laser source (THERLS),” (U.S. Army Missile Command, Redstone Arsenal, Al., 1988).

D. A. Rockwell and H. Bruesselbach, “Wavelength conversion by stimulated Raman scattering,” in Physics of New Laser Sources, N. B. Abraham, ed. (Plenum, New York, 1985).

S. M. Jensen, D. C. Jones, M. Minden, W. Brown, and R. C. Lind, “Phase preservation cleanup in a double-pass Raman amplifier SBS conjugator,” (U.S. Office of Naval Research, Washington, D.C., 1987).

W. P. Brown, Hughes Research Laboratories (personal communication).

H. Bruesselbach, “High gain Nd:YAG amplifier,” in Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), p. 337.
[CrossRef]

A. J. Berry, D. C. Hanna, and C. G. Sawyers, “High power, single frequency operation of a Q-switched TEM00mode Nd:YAG laser,” in Quantum Electronics and Electro-Optics, P. L. Knight, ed. (Wiley, London, 1983), pp. 37ff.

Lightwave Electronics Inc. Model S-100.

H. Bruesselbach, U.S. patent4,734,911 (March29, 1988).

J. Sorce, K. Palombo, S. Matthews, and E. Gregor, “Phase conjugate laser producing 1 J at 532 nm with 80% second harmonic generation efficiency,” in Advanced Solid State Lasers 1992L. L. Chase and A. Pinto eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 3-66–3-68.

H. W. Bruesselbach, D. A. Rockwell, G. C. Valley, and S. M. Wandzura, “Efficient wavelength conversion with a backward Stokes Raman laser,” presented at the Optical Society of America Annual Meeting, New Orleans, La., October 1983.

D. A. Rockwell and D. N. Garrett, “A new system for accurate laser intensity profile analysis,” in Advances in Laser Engineering, M. L. Stitch and E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 187–191 (1977).
[CrossRef]

R. Emblich, White Sands Missile Range, New Mex. (personal communication, 1993).

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 398.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, New York, 1988), p. 144.

J. W. Strohbehn, ed., Laser Beam Propagation in the Atmosphere (Springer-Verlag, Berlin, 1978), p. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the adaptive pointing concept. Illuminator energy returning from the retroreflector through the atmosphere is amplified, phase conjugated, and sent back to the retroreflector. The apertures of the illuminator and the system amplifier, shown separately for clarity, are coaxial or nearly so within the width of the retroreflected beam.

Fig. 2
Fig. 2

Block diagram of the adaptive pointing system. Everything shown was set up on one 1.2 m × 3.0 m optical table.

Fig. 3
Fig. 3

Optical schematics of the pump and illuminator Nd:YAG lasers. The top inset is a slice through the intensity profile of the near field of the pump laser at 532 nm. The middle inset shows the temporal pulse shape for the pump laser, also at the frequency-doubled wavelength. The bottom inset shows the temporal pulse shape for the illuminator laser at the 683-nm operating wavelength.

Fig. 4
Fig. 4

Optical schematic of the backward Raman oscillator.

Fig. 5
Fig. 5

Schematic for the cascaded Raman amplifiers. The (red, 683-nm) signal beam and the (green, 532-nm) pump beam paths are shown separately; they were overlapped only in the two Raman cells by suitably coated mirrors. For clarity only these mirrors and the one curved fold mirror, but no other fold mirrors, are shown. Imaging was used to ensure pump uniformity and information preservation; the pupil or near-field (NF) and far-field (FF) image planes are indicated by dots. The actual red-beam path length from the entrance pupil to its image at the phase conjugator was 5.9 m. The path lengths of the red and green beams between amplifiers were equal. Not shown are the beam-defining apertures placed in some image planes, which also aided alignment. Vacuum cells were used to prevent breakdown at the foci of the green beam.

Fig. 6
Fig. 6

Fractions of illuminator and conjugate-beam energies detected at the retroreflector for 16 successive shots on the 6-km range, with a 3-cm retroreflector aperture. Data indicate typical variances. The variance of the illuminator is smaller because the illuminating beam propagated out of a smaller (2.5-cm) aperture than did the conjugate beam (10 cm). The horizontal dashed line represents the calculated conjugate energy fraction through the aperture in the absence of atmospheric turbulence, with the laser perfectly aimed and with 2.6 dB of atmospheric attenuation.

Fig. 7
Fig. 7

Graph of experimental and calculated energies at a succession of locations operating on the 6-km range. The measured Cn2 was 2 × 10−15 m−2/3. The illuminator laser was attenuated by 23 dB. The solid curve represents experimental data; each point is an average of twenty measured energies. The dashed curves are calculated energies, the upper assuming Cn2 = 2 × 10−15 m−2/3, the lower Cn2 = 2 × 10−14 m2/3.

Fig. 8
Fig. 8

Comparison of selected energetics for three different range distances to show how correction of atmospheric turbulence deteriorates where the turbulence can no longer be resolved. In the 0.5-km case Cn2 = 4.5 × 10−16 m−2/3, in the 2-km case Cn2 = 1.0 × 10−13 m−2/3, and in the 6-km case Cn2 = 1.0 × 10−15 m−2/3.

Tables (1)

Tables Icon

Table 1 Summary of Total System Loss Factors Beginning with Emission from the Illuminator Aperture and Ending with Transmission of the Conjugate Signal from the Transceiver Aperture toward the Retroreflector

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I 0 = Q I p 1 + ( Q I p I S - 1 ) e - M ,
M = g I p L
M = G - ln ( 1 - I 0 Q I p ) .
D 2 L = 4 g E π M τ .
E = π M τ ξ 4 g .
r 0 = 1.44 ( C n 2 k 2 R ) - 3 / 5 ,
C n 2 = 0.236 λ 7 / 6 R - 11 / 6 [ C 1 s ( 0 ) / C 1 ( 0 ) ] [ ln ( E ) - ln ( E ) ] 2 ,

Metrics