Abstract

We have discovered 74 far-infrared laser lines pumped by regular and sequence lines of a cw CO2 laser. The wavelengths range from 49.2 to 708.3 μm. These new lines are to our knowledge the shortest-wavelength far-infrared lines yet observed lasing in hydrazine. Frequency, pump offset, and relative polarization were measured for most of these new lines.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
    [CrossRef]
  2. M. Inguscio, F. Sturmia, K. M. Evenson, D. A. Jennings, A. Scalabrin, and S. R. Stein, "Far-infrared CH3F laser," Opt. Lett. 4, 9–11 (1979).
    [CrossRef] [PubMed]
  3. F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
    [CrossRef]
  4. Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
    [CrossRef]
  5. L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
    [CrossRef]
  6. B. K. Schmitz and W. B. Eules, "A comparative theoretical study of hydrazine," J. Mol. Spectrosc. 257, 227–242 (1992).
  7. T. Kasuya, "Microwave studies of internal motions of hydrazine molecule," Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 56, 1–39 (1962).
  8. H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
    [CrossRef]

1994

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

1992

B. K. Schmitz and W. B. Eules, "A comparative theoretical study of hydrazine," J. Mol. Spectrosc. 257, 227–242 (1992).

1982

H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
[CrossRef]

1979

1975

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

1970

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

1962

T. Kasuya, "Microwave studies of internal motions of hydrazine molecule," Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 56, 1–39 (1962).

1933

L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
[CrossRef]

Audrieth, L. F.

L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
[CrossRef]

Eules, W. B.

B. K. Schmitz and W. B. Eules, "A comparative theoretical study of hydrazine," J. Mol. Spectrosc. 257, 227–242 (1992).

Evenson, K. M.

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

M. Inguscio, F. Sturmia, K. M. Evenson, D. A. Jennings, A. Scalabrin, and S. R. Stein, "Far-infrared CH3F laser," Opt. Lett. 4, 9–11 (1979).
[CrossRef] [PubMed]

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Galão, G. P.

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

Goto, K.

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Hamada, Y.

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

Hirakawa, A. Y.

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

Inguscio, M.

Jennings, D. A.

M. Inguscio, F. Sturmia, K. M. Evenson, D. A. Jennings, A. Scalabrin, and S. R. Stein, "Far-infrared CH3F laser," Opt. Lett. 4, 9–11 (1979).
[CrossRef] [PubMed]

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Jimenez, J. J.

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Jones, H.

H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
[CrossRef]

Kasuya, T.

T. Kasuya, "Microwave studies of internal motions of hydrazine molecule," Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 56, 1–39 (1962).

Nespital, W.

L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
[CrossRef]

Petersen, F. R.

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Scalabrin, A.

Schmitz, B. K.

B. K. Schmitz and W. B. Eules, "A comparative theoretical study of hydrazine," J. Mol. Spectrosc. 257, 227–242 (1992).

Stein, S. R.

Sturmia, F.

Takami, M.

H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
[CrossRef]

Tamagake, K.

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

Taubmann, G.

H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
[CrossRef]

Tsuboi, M.

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

Ulich, H.

L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
[CrossRef]

Vasconcellos, E. C. C.

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

Wells, J. S.

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

Zink, L. R.

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

IEEE J. Quantum Electron.

E. C. C. Vasconcellos, L. R. Zink, G. P. Galão, and K. M. Evenson, "New N2H4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. 30, 2401–2406 (1994).
[CrossRef]

F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, "Far infrared frequency synthesis with stabilized CO2 lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron. QE-11, 838–843 (1975).
[CrossRef]

H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997–1999 (1982).
[CrossRef]

J. Am. Chem. Soc.

L. F. Audrieth, W. Nespital, and H. Ulich, "Electric moments of hydrazine and its derivatives," J. Am. Chem. Soc. 55, 673–678 (1933).
[CrossRef]

J. Mol. Spectrosc.

B. K. Schmitz and W. B. Eules, "A comparative theoretical study of hydrazine," J. Mol. Spectrosc. 257, 227–242 (1992).

Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, "Amino wagging and inversion in hydrazines: antisymmetric wagging band of NH2NH2," J. Mol. Spectrosc. 35, 420–426 (1970).
[CrossRef]

Opt. Lett.

Sci. Papers Inst. Phys. Chem. Res.

T. Kasuya, "Microwave studies of internal motions of hydrazine molecule," Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 56, 1–39 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table 1 New N2H4 Far-Infrared Laser Lines

Tables Icon

Table 2 Far-Infrared Frequency Measurements of the New Optically Pumped N2H4 Laser Lines

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν FIR = ν 1 - ν 2 ± ν beat ± ν μ wave ,
0 < ν beat < 1.5 GHz .
ν beat = ν ref - ν pump ± n ν μ wave ,

Metrics