Abstract

The effects of group-velocity dispersion (GVD) in nonlinear Mach–Zehnder interferometers and nonlinear directional couplers composed of highly nonlinear optical waveguides are analyzed. The criteria for avoiding the switching-performance degradation that results from GVD-related effects are clarified in terms of the lowest soliton order N. The major factor that restricts the lowest N value depends on the device configuration as well as on the extent of the walk-off between the gate and the signal pulses. The lowest switching energy can be estimated by use of the lowest N value and a figure of merit of the nonlinear material.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka and M. Saruwatari, "Ultrafast all-optical switching utilizing the optical Kerr effect in polarizationmaintaining single-mode fibers," IEEE J. Select. Area. Commun. 6, 1186–1198 (1988).
    [CrossRef]
  2. M. Jinno, "Effects of group velocity dispersion on selfycross phase modulation in a nonlinear Sagnac interferometer switch," J. Lightwave Technol. 10, 1167–1178 (1992).
    [CrossRef]
  3. M. N. Islam, "All-optical cascadable NOR gate with gain," Opt. Lett. 15, 417–419 (1990).
    [CrossRef] [PubMed]
  4. M. A. Newhouse, D. L. Weidman, and D. W. Hall, "Enhanced-nonlinearity single-mode lead silicate optical fiber," Opt. Lett. 15, 1185–1187 (1990).
    [CrossRef] [PubMed]
  5. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
    [CrossRef]
  6. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
    [CrossRef]
  7. R. S. Grant and W. Sibbett, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 58, 1119–1121 (1991).
    [CrossRef]
  8. D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
    [CrossRef]
  9. T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
    [CrossRef]
  10. M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
    [CrossRef]
  11. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  13. A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
    [CrossRef]
  14. A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.
  15. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. 18, 1580–1583 (1982).
    [CrossRef]
  16. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
    [CrossRef]
  17. M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
    [CrossRef]
  18. F. Lederer and W. Biehlig, "Bright solitons and light bullets in semiconductor waveguides," Electron. Lett. 30, 1871–1872 (1994).
    [CrossRef]

1994 (2)

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

F. Lederer and W. Biehlig, "Bright solitons and light bullets in semiconductor waveguides," Electron. Lett. 30, 1871–1872 (1994).
[CrossRef]

1993 (3)

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

1992 (3)

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

M. Jinno, "Effects of group velocity dispersion on selfycross phase modulation in a nonlinear Sagnac interferometer switch," J. Lightwave Technol. 10, 1167–1178 (1992).
[CrossRef]

1991 (1)

R. S. Grant and W. Sibbett, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

1990 (2)

1988 (2)

T. Morioka and M. Saruwatari, "Ultrafast all-optical switching utilizing the optical Kerr effect in polarizationmaintaining single-mode fibers," IEEE J. Select. Area. Commun. 6, 1186–1198 (1988).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

1987 (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

1982 (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. 18, 1580–1583 (1982).
[CrossRef]

1975 (1)

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Aitchison, J. S.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Al-Hemyari, K.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Andrejco, M. J.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Asobe, M.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

Aznoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Biehlig, W.

F. Lederer and W. Biehlig, "Bright solitons and light bullets in semiconductor waveguides," Electron. Lett. 30, 1871–1872 (1994).
[CrossRef]

Combemale, Y.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Friberg, S. R.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Grant, R. S.

R. S. Grant and W. Sibbett, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Hall, D. W.

Hikita, M.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Horsthuis, W. H. G.

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

Ironside, C. N.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Islam, M. N.

Itoh, H.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

Jensen, S. M.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. 18, 1580–1583 (1982).
[CrossRef]

Jinno, M.

M. Jinno, "Effects of group velocity dispersion on selfycross phase modulation in a nonlinear Sagnac interferometer switch," J. Lightwave Technol. 10, 1167–1178 (1992).
[CrossRef]

Kaino, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Kanamori, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

Kang, J. U.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

Kim, D. Y.

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

Kurihara, T.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Lederer, F.

F. Lederer and W. Biehlig, "Bright solitons and light bullets in semiconductor waveguides," Electron. Lett. 30, 1871–1872 (1994).
[CrossRef]

Mamyshev, P.

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Mathieu, X.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Miyazawa, T.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

Mohlmann, G. R.

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

Mori, Y.

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Morioka, T.

T. Morioka and M. Saruwatari, "Ultrafast all-optical switching utilizing the optical Kerr effect in polarizationmaintaining single-mode fibers," IEEE J. Select. Area. Commun. 6, 1186–1198 (1988).
[CrossRef]

Naganuma, K.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

Newhouse, M. A.

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Ostrowsky, D. B.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Otomo, A.

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

Papuchon, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Reiber, L.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Roy, A. M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Saifi, M. A.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Saruwatari, M.

T. Morioka and M. Saruwatari, "Ultrafast all-optical switching utilizing the optical Kerr effect in polarizationmaintaining single-mode fibers," IEEE J. Select. Area. Commun. 6, 1186–1198 (1988).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Sejourne, B.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Sibbett, W.

R. S. Grant and W. Sibbett, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Silberberg, Y.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Smith, P. W.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Stegeman, G. I.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Sundheimer, M.

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

Tomaru, S.

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

Villeneuve, A.

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Weidman, D. L.

Werner, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Wigley, P. G. J.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Yang, C. C.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

Appl. Phys. Lett. (7)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half the band gap," Appl. Phys. Lett. 61, 147–149 (1992).
[CrossRef]

R. S. Grant and W. Sibbett, "Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier," Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

D. Y. Kim, M. Sundheimer, A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Mohlmann, "Third order nonlinearity of 4-dialkylamino-4'nitro-stilbene waveguides at 1319 nm," Appl. Phys. Lett. 63, 290–292 (1993).
[CrossRef]

T. Kurihara, S. Tomaru, Y. Mori, M. Hikita, and T. Kaino, "Third-order optical nonlinearities of processable main chain polymer with symmetrically substituted tris-azo dyes," Appl. Phys. Lett. 61, 1901–1903 (1992).
[CrossRef]

M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides," Appl. Phys. Lett. 64, 2922–2924 (1994).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, "Ultrafast all-optical switching in a dual-core fiber nonlinear coupler," Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett. 27, 289–291 (1975).
[CrossRef]

Electron. Lett. (3)

F. Lederer and W. Biehlig, "Bright solitons and light bullets in semiconductor waveguides," Electron. Lett. 30, 1871–1872 (1994).
[CrossRef]

A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of alloptical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electron. Lett. 29, 721–722 (1993).
[CrossRef]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide fiber," Electron. Lett. 29, 1966–1967 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. 18, 1580–1583 (1982).
[CrossRef]

IEEE J. Select. Area. Commun. (1)

T. Morioka and M. Saruwatari, "Ultrafast all-optical switching utilizing the optical Kerr effect in polarizationmaintaining single-mode fibers," IEEE J. Select. Area. Commun. 6, 1186–1198 (1988).
[CrossRef]

J. Lightwave Technol. (2)

M. Jinno, "Effects of group velocity dispersion on selfycross phase modulation in a nonlinear Sagnac interferometer switch," J. Lightwave Technol. 10, 1167–1178 (1992).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Aznoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

A. Villeneuve, P. Mamyshev, G. I. Stegeman, J. S. Aitchison, C. N. Ironside, and K. Al-hemyari, "Efficient time domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler," in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Device configurations of (a) a nonlinear Mach–Zehnder interferometer and (b) a nonlinear directional coupler.

Fig. 2
Fig. 2

Transmittance of gate and signal in a NLDC as a function of normalized gate power. All terms related to GVD are neglected.

Fig. 3
Fig. 3

Transmittance of the gate and the signal pulses in a NLDC as a function of the normalized propagation length. It is assumed that gate and signal have orthogonal polarization and that the gate power is 1.48 Pc.

Fig. 4
Fig. 4

Relation between the walk-off parameter W and the normalized Leff and the ratio between the actual waveguide length L and Leff.

Fig. 5
Fig. 5

Switching profile in a NLDC for various walk-off parameters W. The 0 on the x axis represents the center of the walk-off time, that is, a group-delay difference Δβ1L.

Fig. 6
Fig. 6

Transmittance of the signal in a NLCD as a function of gate power for various walk-off parameters W. GVD terms other than walk-off were neglected.

Fig. 7
Fig. 7

Numerically simulated waveforms in a Mach–Zehnder interferometer where N = 4, the gate and the signal pulses are polarized orthogonally, and there is no walk-off.

Fig. 8
Fig. 8

Relationships between soliton order and intensity transmission, the waveguide length for maximum switching contrast, and the maximum contrast. A Mach–Zehnder interferometer, orthogonal polarization for the gate and signal pulses, and no walk-off are assumed.

Fig. 9
Fig. 9

Relationships between soliton order and gate pulse width at the end of waveguide and the switching-time width. A Mach–Zehnder interferometer, a waveguide length of 1.5πLNL, orthogonal polarization for the gate and the signal pulses, and no walk-off are assumed.

Fig. 10
Fig. 10

Numerically simulated waveforms in at NLDC, where N = 8, the gate and the signal pulses are orthogonally polarized, there is no walk-off, and Lc = 4.0πLNL. It should be noted that signal pulse has one third the width of the gate.

Fig. 11
Fig. 11

Relationships between soliton order and intensity transmission, the waveguide length for maximum switching contrast, and the maximum contrast. NLDC configuration, orthogonal polarization for the gate and signal pulses, and no walk-off are assumed.

Fig. 12
Fig. 12

Relationships between soliton order and gate pulse width at the end of the waveguide and the switching-time width. NLDC configuration, a waveguide length of 3.0πLNL, orthogonal polarization for the gate and signal pulses, and no walk-off are assumed.

Fig. 13
Fig. 13

Numerically simulated waveforms in a Mach–Zehnder interferometer when the same polarization for the gate and the signal pulses, W = 5, and M = 10 (which corresponds to N = 3.0) are assumed.

Fig. 14
Fig. 14

Relationships between soliton order and intensity transmittance at the peak of switched signal pulse, and the switching contrast. A Mach–Zehnder interferometer, the same polarization for the gate and the signal pulses, and W > 3 are assumed. The plot of the smallest N corresponds to M = 5, the next corresponds to M = 10, and the others correspond to different M values in increments of 10.

Fig. 15
Fig. 15

Waveform of the signal at the end of waveguide, phase shift profile of the signal, and waveform of the switched signal. A Mach–Zehnder interferometer, the same polarization for the gate and the signal pulses, and W = 5.0 are assumed.

Fig. 16
Fig. 16

Relationships between soliton order intensity transmittance at the peak of the switched signal pulse and the switching contrast. A Mach–Zehnder interferometer, the same polarization for the gate and the signal pulses, and W < 3 are assumed.

Fig. 17
Fig. 17

Numerically simulated waveforms in a NLDC when the same polarization for the gate and the signal pulses, W = 2, M = 20, and G = 3.4π (which corresponds to N = 10.3) are assumed. The signal pulse is one third as wide as the gate pulse.

Fig. 18
Fig. 18

Relationships between soliton order and the switching contrast and the intensity transmittance. NLDC configuration, the same polarization for the gate and the signal pulses, and W < 3 are assumed. The smallest N value corresponds to M = 10, and the others correspond to different M values in increments of 10.

Fig. 19
Fig. 19

Relationships between soliton order and the switching contrast and the intensity transmittance. NLDC configuration, the same polarization for the gate and the signal pulses, and W > 3 are assumed.

Fig. 20
Fig. 20

Spectra of the original and the switched signal pulses along with the original and the transmitted gate spectra. NLDC configuration, W = 2, and M = 30 are assumed.

Fig. 21
Fig. 21

Spectra of the original and the transmitted signal pulses when the interferometer configuration W = 5 and M = 10 is assumed.

Fig. 22
Fig. 22

Relationships between walk-off parameter W and the spectrum width and spectrum shift of the switched signal. NLDC configuration and M = 100 are assumed, and plotted values are normalized by the original spectrum width. R.M.S., root mean square.

Fig. 23
Fig. 23

Gate and signal transmittances and transmittance ratio versus filter bandwidth. Interferometer configuration, W = 0.5, and M = 10 are assumed.

Fig. 24
Fig. 24

Relationship between M value and gate transmittance with an appropriate bandpass filter in the interferometer configuration. For each curve the pass bandwidth is adjusted to the minimum width at which a signal transmittance of more than 95% could be obtained.

Fig. 25
Fig. 25

Relationship between M value and gate transmittance with an appropriate bandpass filter in the NLDC configuration. For each curve the pass bandwidth is adjusted to the minimum width at which a signal transmittance of more than 95% could be obtained.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ = K 4 π n 2 P L A eff λ s ,
A 1 z - j β 21 2 2 A 2 τ 1 2 = - j n 2 ω 01 c A eff A 1 2 A 1 ,
A 2 z - j β 22 2 2 A 1 τ 2 2 = - j K 2 n 2 ω 02 c A eff A 1 ( τ 2 - Δ β i z ) 2 A 2 ,
A 3 z - j β 22 2 3 A 3 τ 2 2 = 0 ,
A 1 z - j β 21 2 2 A 1 τ 1 2 = - j n 2 ω 01 c A eff A 1 2 A 1 - j κ 1 A 2 ,
A 2 z - j β 21 2 2 A 2 τ 1 2 = - j n 2 ω 01 c A eff A 2 2 A 2 - j κ 1 A 1 ,
A 3 z - j β 23 2 2 A 3 τ 3 2 = - j K 2 n 2 ω 03 c A eff × A 1 ( τ 3 - Δ β 1 z ) 2 A 3 - j κ 3 A 4 ,
A 4 z - j β 23 2 2 A 4 τ 3 2 = - j K 2 n 2 ω 03 c A eff × A 2 ( τ 3 - Δ β 1 z ) 2 A 4 - j κ 3 A 3 ,
T = ½ [ 1 + cn ( π [ P / P c ] 2 ) ] ,
L NL = λ A eff 2 π n 2 P ,
L D = T 0 2 β 2 ,
N 2 = L D / L NL .
Δ β 1 L = M β 2 L T 0 .
W = Δ β 1 L T 0 = M β 2 L T 0 2 .
L = W M L D .
L eff = T 0 Δ β 1 F max = L D M F max ,
F ( t ) = Erfc ( - L t W T 0 ) - Erfc ( L - L t W T 0 ) = Erfc [ - L D M t T 0 ] - Erfc [ L D M ( W - t T 0 ) ] .
L = G L NL .
N 2 = M G / W .
L eff = π M L D .
N 2 = M π 2 .
P T 0 λ β 2 2 π n 2 A eff T 0 N 2 .

Metrics