Abstract

Pulse generation in birefringent fibers by four-wave mixing in the presence of Raman scattering is theoretically modeled by a set of coupled nonlinear Schrödinger equations that are solved numerically. We discuss phase matching in the positive group-velocity dispersion regime for the split-pump configuration, which places the parametric frequency shift within the Raman band, and derive the combined initial gain. It is found that for shorter fiber lengths the symmetry-breaking roles of Raman–Stokes gain and Raman–anti-Stokes loss is balanced by four-wave mixing, resulting in a common effective power gain for both components. The importance of the relative phase of the four participating pulses as a switching parameter for the direction of the energy flow is demonstrated. It is further shown that, as a result of pulse walk-off, Raman scattering becomes the dominant process for longer fiber lengths. Theoretical results are compared with experimental cross-correlation pulse shapes.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers

P. Tchofo Dinda, G. Millot, and S. Wabnitz
J. Opt. Soc. Am. B 15(5) 1433-1441 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription