Abstract

Liquid suspensions of carbon act as optical limiters in the presence of high-intensity Q-switched laser pulses. The optical limiting is a result of optical breakdown, which is initiated by absorption in the small carbon particles. We measured the total energy scattered during the breakdown process and the angular distribution of the scattered light as a function of input energy. We also compared the relative scattered energy created during limiting in the carbon suspensions with that generated in solutions of fullerenes in toluene. The ratio of scattered to absorbed energy is different for the suspensions from that for the fullerene solutions, indicating that different mechanisms dominate the limiting processes in the two media.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. W. Pohlmann, R. C. Honey, and J. L. Guagliardo, "Optical radiation limiter," U.S. patent 4,890,075 (December 26, 1989).
  2. K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
    [CrossRef]
  3. K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
    [CrossRef]
  4. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, New York, 1989).
  5. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  7. K. M. Nashold, R. A. Brown, and J. M. Voss, "Optical limiter program review," presented at Naval Air Warfare Center Division, Warminster, Pa., February 11, 1992.
  8. L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature (London) 356, 225 (1992).
    [CrossRef]
  9. D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
    [CrossRef]
  10. M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
    [CrossRef]
  11. R. E. Smalley, "The third form of carbon," Naval Res. Rev. XLIII, 3 (1991).
  12. T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
    [CrossRef]
  13. W. J. Blau and H. J. Byrne, "Large infrared nonlinear response of C60," Phys. Rev. Lett. 67, 1423 (1991).
    [CrossRef] [PubMed]
  14. R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
    [CrossRef]
  15. D. G. Goebel, "Generalized integrating-sphere theory," Appl. Opt. 6, 125 (1967).
    [CrossRef] [PubMed]
  16. J. Williams, Oceanographic Instrumentation, U.S. Naval Institute Series in Oceanography (Naval Institute Press, Annapolis, Md., 1973), pp. 87–88.
  17. L. W. Tutt, Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, California 90265-4797 (personal communication, 1992).
  18. R. F. Curl and R. E. Smalley, "Fullerenes," Sci. Am. 265, 54 (1991).
    [CrossRef]
  19. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

1993

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

1992

K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
[CrossRef]

L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature (London) 356, 225 (1992).
[CrossRef]

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

1991

R. E. Smalley, "The third form of carbon," Naval Res. Rev. XLIII, 3 (1991).

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
[CrossRef]

W. J. Blau and H. J. Byrne, "Large infrared nonlinear response of C60," Phys. Rev. Lett. 67, 1423 (1991).
[CrossRef] [PubMed]

R. F. Curl and R. E. Smalley, "Fullerenes," Sci. Am. 265, 54 (1991).
[CrossRef]

1985

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

1967

Bae, Y. K.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Becker, C. H.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Blau, W. J.

W. J. Blau and H. J. Byrne, "Large infrared nonlinear response of C60," Phys. Rev. Lett. 67, 1423 (1991).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Brandelik, D.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Brown, R. A.

K. M. Nashold, R. A. Brown, and J. M. Voss, "Optical limiter program review," presented at Naval Air Warfare Center Division, Warminster, Pa., February 11, 1992.

K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
[CrossRef]

Byrne, H. J.

W. J. Blau and H. J. Byrne, "Large infrared nonlinear response of C60," Phys. Rev. Lett. 67, 1423 (1991).
[CrossRef] [PubMed]

Colclasure, C.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Crane, R.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Cremers, D. A.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, New York, 1989).

Curl, R. F.

R. F. Curl and R. E. Smalley, "Fullerenes," Sci. Am. 265, 54 (1991).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
[CrossRef]

Epling, R.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

Goebel, D. G.

Guagliardo, J. L.

J. L. W. Pohlmann, R. C. Honey, and J. L. Guagliardo, "Optical radiation limiter," U.S. patent 4,890,075 (December 26, 1989).

Honey, R. C.

J. L. W. Pohlmann, R. C. Honey, and J. L. Guagliardo, "Optical radiation limiter," U.S. patent 4,890,075 (December 26, 1989).

K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hulst, H. C. van de

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Ippen, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

Joshi, M. P.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Jusinski, L. E.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Kost, A.

L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature (London) 356, 225 (1992).
[CrossRef]

Kuroshima, S.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
[CrossRef]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

Lorents, D. C.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Malhotra, R.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

McClean, D.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Mehendale, S. C.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Mishra, S. R.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Monsour, K.

K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
[CrossRef]

Nashold, K. M.

K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
[CrossRef]

K. M. Nashold, R. A. Brown, and J. M. Voss, "Optical limiter program review," presented at Naval Air Warfare Center Division, Warminster, Pa., February 11, 1992.

Obermeier, K.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Pachter, R.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Pohlmann, J. L. W.

J. L. W. Pohlmann, R. C. Honey, and J. L. Guagliardo, "Optical radiation limiter," U.S. patent 4,890,075 (December 26, 1989).

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

Radziemski, L. J.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, New York, 1989).

Rawat, H. S.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Rustagi, K. C.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Schmitt, M.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Smalley, R. E.

R. E. Smalley, "The third form of carbon," Naval Res. Rev. XLIII, 3 (1991).

R. F. Curl and R. E. Smalley, "Fullerenes," Sci. Am. 265, 54 (1991).
[CrossRef]

Soileau, M. J.

K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
[CrossRef]

Steiner, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

Stryland, E. W. Van

K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
[CrossRef]

Tanigaki, K.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
[CrossRef]

Tondiglia, V.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Tse, D. S.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Tutt, L. W.

L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature (London) 356, 225 (1992).
[CrossRef]

L. W. Tutt, Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, California 90265-4797 (personal communication, 1992).

Voss, J. M.

K. M. Nashold, R. A. Brown, and J. M. Voss, "Optical limiter program review," presented at Naval Air Warfare Center Division, Warminster, Pa., February 11, 1992.

Wachsman, E. D.

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

Walter, D. P.

K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
[CrossRef]

Williams, J.

J. Williams, Oceanographic Instrumentation, U.S. Naval Institute Series in Oceanography (Naval Institute Press, Annapolis, Md., 1973), pp. 87–88.

Appl. Opt.

Appl. Phys. Lett.

M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, and K. C. Rustagi, "Investigation of optical limiting in C60 solution," Appl. Phys. Lett. 62, 1763 (1993).
[CrossRef]

Chem. Phys. Lett.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, "Excitedstate properties of C60," Chem. Phys. Lett. 181, 501 (1991).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steiner, "Time-resolved studies of Nd:YAG laserinduced breakdown-plasma formation, acoustic wave generation and cavitation," Invest. Ophthalmol. Vis. Sci. 26 (1985).

J. Opt. Soc. Am.

K. Monsour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. 9, 1100 (1992).
[CrossRef]

Nature

L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature (London) 356, 225 (1992).
[CrossRef]

Naval Res. Rev.

R. E. Smalley, "The third form of carbon," Naval Res. Rev. XLIII, 3 (1991).

Phys. Rev. Lett.

W. J. Blau and H. J. Byrne, "Large infrared nonlinear response of C60," Phys. Rev. Lett. 67, 1423 (1991).
[CrossRef] [PubMed]

Proc. Mater. Res. Soc. Symp.

D. Brandelik, D. McClean, M. Schmitt, R. Epling, C. Colclasure, V. Tondiglia, R. Pachter, K. Obermeier, and R. Crane, "Nonlinear optical properties of buckminsterfullerene solutions," Proc. Mater. Res. Soc. Symp. 247, 361 (1992).
[CrossRef]

Sci. Am.

R. F. Curl and R. E. Smalley, "Fullerenes," Sci. Am. 265, 54 (1991).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

J. Williams, Oceanographic Instrumentation, U.S. Naval Institute Series in Oceanography (Naval Institute Press, Annapolis, Md., 1973), pp. 87–88.

L. W. Tutt, Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, California 90265-4797 (personal communication, 1992).

R. Malhotra, D. C. Lorents, Y. K. Bae, C. H. Becker, D. S. Tse, L. E. Jusinski, and E. D. Wachsman, "Production, mass spectrometry, and thermal properties of fullerenes," in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, Vol. 481 of the ACS Symposium Series, G. S. Hammond and V. J. Kuck, eds. (American Chemical Society, Washington, D.C., 1992), Chap. 9.
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

K. M. Nashold, R. A. Brown, and J. M. Voss, "Optical limiter program review," presented at Naval Air Warfare Center Division, Warminster, Pa., February 11, 1992.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, New York, 1989).

J. L. W. Pohlmann, R. C. Honey, and J. L. Guagliardo, "Optical radiation limiter," U.S. patent 4,890,075 (December 26, 1989).

K. M. Nashold, R. A. Brown, R. C. Honey, and D. P. Walter, "Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles," in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1105, 78 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Optical test-bed to measure transmitted, scattered, and absorbed energy.

Fig. 2
Fig. 2

Image of a spot in the focal plane of the cell.

Fig. 3
Fig. 3

Transmitted, scattered, and absorbed energy as a function of input energy for carbon suspensions with three different particle concentrations.

Fig. 4
Fig. 4

Same as Fig. 3, for low-input energies.

Fig. 5
Fig. 5

Ratio of scattered to absorbed energy as a function of input energy.

Fig. 6
Fig. 6

Limiting in 80% C60/20% C70 in toluene compared with limiting in C60 in toluene.

Fig. 7
Fig. 7

Comparison of limiting by fullerenes with that of carbon in ethanol.

Fig. 8
Fig. 8

Ratio of scattered to absorbed energy as a function of input energy: 80% C60/20% C70 in toluene compared with C60 in toluene.

Fig. 9
Fig. 9

Limiting with f/29 focusing optics: carbon in ethanol compared with C60 in toluene.

Fig. 10
Fig. 10

Test-bed for measuring scattering energy as a function of angle.

Fig. 11
Fig. 11

Image of the focal plane with the cylindrical cell.

Fig. 12
Fig. 12

Transmitted energy versus input energy for an f/48 system and a 1.5-cm path-length cylindrical cell.

Fig. 13
Fig. 13

Relative scattered energy versus angle for horizontally polarized input energy.

Fig. 14
Fig. 14

Relative scattered energy as a function of input energy (horizontally polarized input energy).

Fig. 15
Fig. 15

Limiting for horizontally and vertically polarized input energy (90% transmission over 1 cm at λ = 532 nm, limiting cell path length 2.3 cm).

Fig. 16
Fig. 16

Ratio of scattered to input energy as a function of angle θ, with respect to the optic axis.

Fig. 17
Fig. 17

Integration process diagram.

Fig. 18
Fig. 18

Relative scattered energy integrated from 0° to 180°.

Fig. 19
Fig. 19

Decomposition of electric vectors of incident and scattered waves.

Tables (1)

Tables Icon

Table 1 Results of Angularly Resolved Data Compared with Integrating Sphere Data

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( θ i , ϕ j ) I 0 = [ i 2 ( θ i ) cos 2 ( ϕ j ) + i 1 ( θ i ) sin 2 ( ϕ j ) ] k 2 R 2 ,
2 π R sin θ ( 10 360 ) 2 π R ( Δ θ i 360 ) R 2 ,
I ( θ n ) = I ( 0 , 0 ) + i = 1 n j = 1 36 [ I ( θ i , 0 ) cos 2 ( j 10° ) + I ( θ i , 90° ) sin 2 ( j 10° ) ] R 2 sin θ i Δ θ i 257.8 d 2 .
[ E E ] = [ S 2 S 3 S 4 S 1 ] exp ( - i k r + i k z ) i k r [ E 0 E 0 ] ,
E = S 1 ( θ ) exp ( - i k r + i k z ) i k r E 0 ,
E = S 2 ( θ ) exp ( - i k r + i k z ) i k r E 0 .
I ( θ ) = i 1 ( θ ) I 0 k 2 R 2 ,
I ( θ ) = i 2 ( θ ) I 0 k 2 R 2 , i 2 ( θ ) = S 2 ( θ ) 2 .
I ( θ , ϕ ) = [ i 2 ( θ ) cos 2 ϕ + i 1 ( θ ) sin 2 ϕ ] I 0 k 2 R 2 .
I ( θ , 0 ) = [ i 2 ( θ ) × 1 + i 1 ( θ ) × 0 ] I 0 k 2 R 2 = i 2 ( θ ) I 0 k 2 R 2 ,
I ( θ , 90° ) = i 1 ( θ ) I 0 k 2 R 2 .

Metrics