Abstract

Effects of stimulated photorefractive backscattering (SPB) interactions in both stimulated photorefractive backscattering and four-wave mixing (SPB-FWM) and total internal reflection (TIR) self-pumped phase conjugators have been analyzed theoretically. SPB interactions in the four-wave mixing regions are neglected. Calculations show that the operational threshold and the phase conjugation reflectivity of both phase conjugators are very sensitive to the backscattering two-wave mixing gain coefficient of the crystals. From these results the mechanism transition phenomenon of a self-pumped phase conjugator between SPB-FWM and TIR can be explained if the backscattering gain coefficient of the crystal varies with doping concentration or with wavelength.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.
    [CrossRef]
  2. M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  3. J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
    [CrossRef]
  4. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  5. M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
    [CrossRef]
  6. T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
    [CrossRef] [PubMed]
  7. K. R. MacDonald and J. Feinberg, J. Opt. Soc. Am. 73, 548 (1983).
    [CrossRef]
  8. Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
    [CrossRef]
  9. R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
    [CrossRef]
  10. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
    [CrossRef] [PubMed]
  11. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
    [CrossRef]
  12. J. E. Ford, Y. Fainman, and S. H. Lee, Appl. Opt. 28, 4808 (1989).
    [CrossRef] [PubMed]
  13. A. V. Nowak, T. R. Moore, and R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
    [CrossRef]
  14. A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
    [CrossRef]
  15. M. Cronin-Golomb, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
    [CrossRef]
  16. R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl. Phys. Lett. 50, 647 (1987).
    [CrossRef]
  17. D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
    [CrossRef] [PubMed]
  18. Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
    [CrossRef]
  19. Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
    [CrossRef] [PubMed]
  20. Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
    [CrossRef]
  21. P. Yeh, Opt. Commun. 45, 323 (1983).
    [CrossRef]
  22. J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
    [CrossRef]
  23. J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
    [CrossRef]
  24. M. D. Ewbank, R. R. Neurgaonkar, and W. K. Cory, J. Appl. Phys. 62, 374 (1987).
    [CrossRef]

Baer, T. M.

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

Chang, J. Y.

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
[CrossRef] [PubMed]

Chang, T. Y.

T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

Cory, W. K.

M. D. Ewbank, R. R. Neurgaonkar, and W. K. Cory, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Cronin-Golomb, M.

J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

Dou, S. X.

J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Eason, R. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Ewbank, M. D.

M. D. Ewbank, R. R. Neurgaonkar, and W. K. Cory, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
[CrossRef]

Fainman, Y.

J. E. Ford, Y. Fainman, and S. H. Lee, Appl. Opt. 28, 4808 (1989).
[CrossRef] [PubMed]

Feinberg, J.

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
[CrossRef]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, J. Opt. Soc. Am. 73, 548 (1983).
[CrossRef]

Fisher, B.

J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

Fisher, R. A.

A. V. Nowak, T. R. Moore, and R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
[CrossRef]

Ford, J. E.

J. E. Ford, Y. Fainman, and S. H. Lee, Appl. Opt. 28, 4808 (1989).
[CrossRef] [PubMed]

Gao, H.

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Garrett, M. H.

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
[CrossRef] [PubMed]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Giuliano, C. R.

R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

Guan, Q. C.

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
[CrossRef]

T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Jenssen, H. P.

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
[CrossRef] [PubMed]

Keirstead, M. S.

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

Lau, K. Y.

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

Lee, S. H.

J. E. Ford, Y. Fainman, and S. H. Lee, Appl. Opt. 28, 4808 (1989).
[CrossRef] [PubMed]

Lian, Y. W.

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Lind, R. C.

R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

MacDonald, K. R.

K. R. MacDonald and J. Feinberg, J. Opt. Soc. Am. 73, 548 (1983).
[CrossRef]

Moore, T. R.

A. V. Nowak, T. R. Moore, and R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
[CrossRef]

Mullen, R. A.

R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
[CrossRef]

Neurgaonkar, R. R.

M. D. Ewbank, R. R. Neurgaonkar, and W. K. Cory, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
[CrossRef]

Nowak, A. V.

A. V. Nowak, T. R. Moore, and R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
[CrossRef]

Pepper, D. M.

R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

Rytz, D.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

Stephens, R. R.

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
[CrossRef]

Vazquez, A.

A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
[CrossRef]

Vickers, D. J.

R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
[CrossRef]

Wang, H. T.

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Wang, J. Y.

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

Warde, C.

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
[CrossRef] [PubMed]

Wechsler, B. A.

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

West, L.

R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
[CrossRef]

White, J. O.

J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

Wu, X.

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Yang, C.

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Yariv, A.

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Ye, P. X.

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Yeh, P.

P. Yeh, Opt. Commun. 45, 323 (1983).
[CrossRef]

Zhang, J. S.

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
[CrossRef]

Zhu, Y.

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

Other (24)

P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fisher, and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

M. Cronin-Golomb, B. Fisher, J. O. White, and A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, J. Opt. Soc. Am. 73, 548 (1983).
[CrossRef]

Y. W. Lian, H. Gao, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. Lett. 63, 1745 (1993).
[CrossRef]

R. A. Mullen, D. J. Vickers, L. West, and D. M. Pepper, J. Opt. Soc. Am. B 9, 1726 (1992).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Opt. Lett. 18, 405 (1993).
[CrossRef] [PubMed]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, Opt. Commun. 101, 60 (1993).
[CrossRef]

J. E. Ford, Y. Fainman, and S. H. Lee, Appl. Opt. 28, 4808 (1989).
[CrossRef] [PubMed]

A. V. Nowak, T. R. Moore, and R. A. Fisher, J. Opt. Soc. Am. B 5, 1864 (1988).
[CrossRef]

A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, J. Opt. Soc. Am. B 9, 1416 (1992).
[CrossRef]

M. Cronin-Golomb, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, Opt. Lett. 15, 1279 (1990).
[CrossRef] [PubMed]

Y. W. Lian, H. Gao, S. X. Dou, H. T. Wang, P. X. Ye, Q. C. Guan, and J. Y. Wang, Appl. Phys. 59, 655 (1994).
[CrossRef]

Y. W. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Lett. 19, 610 (1994).
[CrossRef] [PubMed]

Y. W. Lian, S. X. Dou, J. S. Zhang, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. X. Ye, Opt. Commun. 110, 192 (1994).
[CrossRef]

P. Yeh, Opt. Commun. 45, 323 (1983).
[CrossRef]

J. S. Zhang, Y. W. Lian, S. X. Dou, and P. X. Ye, Opt. Commun. 110, 631 (1994).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); 52, 537(E) (1981).
[CrossRef]

M. D. Ewbank, R. R. Neurgaonkar, and W. K. Cory, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical photographs of the optical beam path patterns observed in BaTiO3:Ce self-pumped phase conjugators. (a) 8-ppm sample with dimensions 6.20 mm × 6.30 mm × 6.80 mm. The 6.80-mm-long edge is parallel to the c axis, the direction of which is from top to bottom. The incident beam enters the crystal by its left-hand, a face with wavelengths of (a1) 701 nm and (a2) 714 nm. (b) 45-ppm sample with dimensions 4.45 mm 3× 4.15 mm × 6.15 mm. The 6.15-mm-long edge is parallel to the c axis, the direction of which is also from top to bottom. The incident beam enters the crystal by its right-hand a face with wavelengths of (b1) 706 nm and (b2) 718 nm.

Fig. 2
Fig. 2

Orientations of all the beams in a SPB-FWM self-pumped phase conjugator. The coordinate system defining the FWM region is o–z, and that defining the SPB region is OS–ZS.

Fig. 3
Fig. 3

Orientations of all the beams in a TIR self-pumped phase conjugator. The coordinate systems defining the FWM regions are o–z and o′–z′, and those defining the SPB regions are OS–ZS and O′S–Z′S.

Fig. 4
Fig. 4

Threshold coupling strength (solid curves) and threshold reflectivity (dashed curves) of a SPB-FWM phase conjugator versus γ2KLS. The backscattering seeding reflection of the crystal corner, RS, is assumed to be 1, 1 × 10−1; 2, 1 × 10−2; 3, 1 × 10−3; and 4, 1 ×10−4.

Fig. 5
Fig. 5

SPPC reflectivity of a SPB-FWM phase conjugator as a function of γ2KLS at different γl: solid curves, RS = 1 × 10−1; dashed curves, RS = 1 × 10−2; dotted curves, RS = 1 × 10−3.

Fig. 6
Fig. 6

Threshold coupling strength (solid curves) and threshold reflectivity (dashed curves) of a TIR phase conjugator versus γ2KL″. It is assumed that L = 4.87 mm and L′ = 4.50 mm, and the total reflection KC on the two faces of the crystal near the corner is 1, 1.0; 2, 0.95; 3, 0.9; 4, 0.8; and 5, 0.6.

Fig. 7
Fig. 7

SPPC reflectivity of a TIR phase conjugator versus γ2KL″ at different γl. L = 4.87 mm and L′= 4.50 mm. Solid curves: KC = 1.0; dashed curves: KC = 0.9; dotted curves: KC = 0.8; dashed-dotted curves: KC = 0.6.

Fig. 8
Fig. 8

SPPC reflectivities versus γ2KL″ that are generated with SPB-FWM (solid curves) and TIR (dashed curve) mechanisms in the same crystal and incidence configuration. L = 4.87 mm and L′ = 4.50 mm. Note that γ2KLS and γ2KL″ are equivalent here.

Fig. 9
Fig. 9

SPPC reflectivities versus γ2KLS at different γl in a SPB-FWM phase conjugator that are calculated with the present method (solid curves) and with the nonapproximation method (dashed curves). It is assumed that RS = 1 × 10−3.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

d I 1 S ( Z S ) d Z S = 2 γ 2 K I 1 S ( Z S ) I 2 S ( Z S ) I 1 S ( Z S ) + I 2 S ( Z S ) , d I 2 S ( Z S ) d Z S = 2 γ 2 K I 1 S ( Z S ) I 2 S ( Z S ) I 1 S ( Z S ) + I 2 S ( Z S ) ,
I 1 S , 2 S ( Z S ) = ± C S + [ C S 2 + B S exp ( 2 γ 2 K Z S ) ] 1 / 2 ,
B S = I 1 S ( 0 ) I 2 S ( 0 ) , C S = [ I 1 S ( 0 ) I 2 S ( 0 ) ] / 2 .
M S = I 2 S ( 0 ) / I 1 S ( 0 ) = ( S 1 ) / ( S + 1 ) ,
S = 1 + 4 R S ( 1 R S ) 2 exp ( 2 γ 2 K L S ) .
d A 1 d z = γ I 0 ( A 1 A 4 * + A 2 * A 3 ) A 4 , d A 2 * d z = γ I 0 ( A 1 A 4 * + A 2 * A 3 ) A 3 * , d A 3 d z = γ I 0 ( A 1 A 4 * + A 2 * A 3 ) A 2 , d A 4 * d z = γ I 0 ( A 1 A 4 * + A 2 * A 3 ) A 1 * ,
c = A 1 A 2 + A 3 A 4 , d 1 = I 1 + I 4 , d 2 = I 2 + I 3 .
A 12 ( z ) = S D exp ( 2 μ z ) S + 2 c * [ D exp ( 2 μ z ) 1 ] ,
A 34 ( z ) = S E exp ( 2 μ z ) S + 2 c * [ E exp ( 2 μ z ) 1 ] ,
| A 12 ( l 1 ) | = 0 ,
| A 12 ( l 2 ) | = 1 / M S .
| c | 2 = { [ I 1 ( l 2 ) I 2 ( l 2 ) ] 1 / 2 + [ I 3 ( l 2 ) I 4 ( l 2 ) ] 1 / 2 } 2 = 1 4 [ M S | A 34 ( l 2 ) | ( I 0 Δ ) + ( I 0 + Δ ) M S + | A 34 ( l 2 ) | ] 2 .
tanh ( γ l 2 I 0 r ) = r 2 | c | M S Δ .
| A 34 ( l 1 ) | = [ 2 | c | + | A 34 ( l 2 ) | Δ ] tanh ( μ l ) + | A 34 ( l 2 ) | r [ 2 | c * | | A 34 ( l 2 ) | Δ ] tanh ( μ l ) + r ,
| c | 2 = ( Δ + I 0 ) 2 / 4 M s ,
tanh ( γ l 2 I 0 r ) = r / I 0 .
R | A 34 ( l 1 ) | 2 = { M S ± [ a 2 ( 1 + M S ) 1 ] 1 / 2 M S + 2 M S [ a 2 ( 1 + M S ) 1 ] 1 / 2 } 2 .
( γ l ) th = ( 1 + M S ) 1 / 2 ln ( 1 + M S 1 1 + M S + 1 ) ,
R th = M S / ( M S + 2 ) 2 .
I 1 S , 2 S ( Z S ) = ± C S + [ C S 2 + B S exp ( 2 γ 2 K Z S ) ] 1 / 2 , I 1 S , 2 S ( Z S ) = ± C S + [ C S 2 + B S exp ( 2 γ 2 K Z S ) ] 1 / 2 ,
u B S 2 + υ B S + w = 0 ,
u = K C 2 ( q 4 / I 1 2 + 1 / I 1 2 ) + K C ( 1 + K C 2 ) q 2 / I 1 I 1 , υ = [ ( 1 K C 2 ) 2 exp ( 2 γ 2 K L ) + 2 K C 2 ( 1 + q 2 ) + K C ( 1 + K C 2 ) ( I 1 / I 1 + q 2 I 1 / I 1 ) ] , w = K C 2 ( I 1 2 + I 1 2 ) + K C ( 1 + K C 2 ) I 1 I 1 ,
B S = ( υ ± υ 2 4 u w ) / 2 u .
K S = q 2 B S / I 1 I 1 , K S = B S / I 1 I 1 ,
A 3 ( l 2 ) = 0 , A 1 ( l 1 ) = 0 , A 1 ( l 1 ) = 0 , A 2 ( l 2 ) = q K S 1 / 2 exp ( i θ ) A 1 ( l 2 ) , A 2 ( l 2 ) = K S exp ( i θ ) A 1 ( l 2 ) , A 3 ( l 2 ) = exp ( i ϕ ) A 3 ( l 1 ) , A 4 ( l 1 ) = exp ( i ϕ ) A 4 ( l 2 ) ,
c = ( 1 + q ) c , d 1 = d 1 + d 2 / K S .
tanh γ l 2 ξ = ξ ,
ξ r I 0 = ( 1 + K S ) [ Δ 2 + ( r 2 Δ 2 ) / ( 1 + q ) 2 ] 1 / 2 K S ( 1 Δ ) ( 1 K S ) Δ ,
Δ = ( 1 K S ) ( 1 Δ ) 4 1 q 1 + q ( 1 + K S ) ( r 2 Δ 2 ) 4 ( 1 + Δ ) ± ( 1 + K S ) 1 r 2 4 × [ ( 1 + q ) 2 ( 1 r 2 ) + 4 q ( r 2 Δ 2 ) ( 1 + Δ ) 2 ( 1 + q ) 2 ] 1 / 2 ,
Δ = q ( r X ) 2 ( 1 r 2 ) X 2 ( 1 q ) ( r X ) ( 1 r 2 ) X q ( r X ) 2 + ( 1 r 2 ) X 2 ,
I 1 I 1 S ( 0 ) = I 1 ( l 2 ) = 2 | c | 2 / ( I 0 + Δ ) ,
I 1 I 1 S ( 0 ) = I 1 ( l 2 ) = ( 1 Δ ) / 2 ( I 0 Δ ) / 2 .
R = r 2 Δ 2 ( 1 Δ ) 2 .
M s = [ ( S 1 ) / ( S + 1 ) ] exp ( α L s ) ,
S = 1 + 4 R S exp ( α L S ) [ 1 R S exp ( α L S ) ] 2 × exp ( 2 γ 2 K L S ) .
K S = ( q 2 B S / I 1 I 1 ) exp ( α L ) , K S = ( B s / I 1 I 1 ) exp ( α L ) .

Metrics