Abstract

We analyze the stability of two recently demonstrated photorefractive resonator circuits. The analysis is based on single-mode models of the multimode circuits. The flip-flop, which consists of two competitively coupled rings, is considered in the two limits where the rings share or have separate gain volumes. Both configurations are found to be stable for typical experimental conditions. The feature extractor consists of two rings with a shared gain volume. It is found to be unconditionally stable. The results are discussed in the context of the experimental demonstrations.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photorefractive flip-flop

Dana Z. Anderson, Claus Benkert, Beth Chorbajian, and Anno Hermanns
Opt. Lett. 16(4) 250-252 (1991)

Two-beam coupling modules for photorefractive optical circuits

Valéria B. Damião, Danielle L. Manuzak, William S. Bickel, and Dana Z. Anderson
Appl. Opt. 40(20) 3365-3370 (2001)

Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber

Ming Xu, Wan Yang, Tao Hong, TangZhen Kang, JianHua Ji, and Ke Wang
Appl. Opt. 56(16) 4577-4584 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (164)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription