Abstract

Completely self-starting and stable operation of a Kerr-lens mode-locked Ti:sapphire laser was realized in both picosecond and femtosecond regimes. The cavity has a symmetric X configuration with soft aperturing. Enhanced Kerr nonlinearity and reduced backscattering effects were thought to be key to obtaining stable self-starting self-mode-locked operation from 765 to 815 nm for the picosecond regime and from 770 to 835 nm for the femtosecond regime. The mode-locking starting time as measured by the onset of the second-harmonic signal ranged from 300 ms to 2 s, depending on cavity alignment. Preliminary data also suggest that intracavity intensity fluctuation necessary for the laser to evolve into stable mode locking could be as short as 10–40 ps.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Curley and A. I. Ferguson, “Actively mode-locked Ti:sapphire laser producing transform-limited pulses of 150-fs duration,” Opt. Lett. 16, 1016 (1991).
    [CrossRef] [PubMed]
  2. N. Sarukara, Y. Ishida, and H. Nakano, “Generation of 50-fs pulses from a pulse compressed, cw, passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 153 (1991).
  3. U. Keller, G. W. t’Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022 (1991).
    [CrossRef] [PubMed]
  4. Y. Lui, K. W. Sun, P. R. Pruncal, and S. A. Lyan, “Simple method to start and maintain self-mode-locking of a Ti:sapphire laser,” Opt. Lett. 17, 1219 (1992).
    [CrossRef]
  5. N. H. Rivzi, R. M. W. French, and J. R. Taylor, “Continuously self-mode-locked Ti:sapphire laser that produces sub-50-fs pulses,” Opt. Lett. 17, 279 (1992).
    [CrossRef]
  6. F. Krausz, T. Brabec, and Ch. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16, 235 (1991).
    [CrossRef] [PubMed]
  7. H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331 (1991).
    [CrossRef] [PubMed]
  8. J. Hermann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  9. S. Chen and J. Wang, “Self-starting issues of passive self-focusing mode locking,” Opt. Lett. 16, 1689 (1991).
    [CrossRef] [PubMed]
  10. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  11. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220 (1993).
    [CrossRef] [PubMed]
  12. M. Lai, “Self-starting, self-mode-locked Ti:sapphire laser,” Opt. Lett. 19, 722 (1994).
    [CrossRef] [PubMed]
  13. G. Cerullo, S. De Silvestri, V. Magni, and P. L. Pallero, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807 (1994);G. Cerullo, S. De Silvestri, V. Magni, and O. Zvelto, “Self-starting femtosecond Kerr lens mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1994), paper CWA57.
    [CrossRef] [PubMed]
  14. G. Cerullo, S. De Silvestri, and V. Magni, “Self-starting Kerr lens mode-locking of a Ti:sapphire laser,” Opt. Lett. 19, 1040 (1994).
    [CrossRef] [PubMed]
  15. C. Radzewicz, G. W. Pearson, and J. S. Crasinski, “Use of ZnS as an additional nonlinear intracavity self-focusing element in a Ti:sapphire self-mode locked laser,” Opt. Commun. 102, 464 (1993).
    [CrossRef]
  16. K. H. Lin and W. F. Hsieh, “Analytical design of symmetrical Kerr-lens mode-locking laser cavities,” J. Opt. Soc. Am B 11, 737 (1994).
    [CrossRef]
  17. After completion of this research we found that the autocorrelator that we had used is rather dispersive, and the autocorrelation trace in Fig. 6(b) must be corrected by a factor of 1.4–1.5, so the actual pulse width is 100–110 fs.
  18. N. W. Pu, J.-M. Shieh, Y. Lai, and C. L. Pan, “Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser,” Opt. Lett. 20, 163 (1995).
    [CrossRef] [PubMed]
  19. J. L. A. Chilla and O. E. Martinez, “Spatial-temporal analysis of the self-mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 10, 638 (1993).
    [CrossRef]

1995 (1)

1994 (5)

1993 (3)

1992 (2)

1991 (7)

Brabec, T.

Cerullo, G.

Chen, S.

Chilla, J. L. A.

Crasinski, J. S.

C. Radzewicz, G. W. Pearson, and J. S. Crasinski, “Use of ZnS as an additional nonlinear intracavity self-focusing element in a Ti:sapphire self-mode locked laser,” Opt. Commun. 102, 464 (1993).
[CrossRef]

Cunningham, J. E.

Curley, P. F.

De Silvestri, S.

Ferguson, A. I.

French, R. M. W.

Fujimoto, J. G.

Haus, H. A.

Hermann, J.

Hsieh, W. F.

K. H. Lin and W. F. Hsieh, “Analytical design of symmetrical Kerr-lens mode-locking laser cavities,” J. Opt. Soc. Am B 11, 737 (1994).
[CrossRef]

Ippen, E. P.

Ishida, Y.

Jacobson, J.

Kean, P. N.

Keller, U.

Knox, W. H.

Krausz, F.

Lai, M.

Lai, Y.

Lin, K. H.

K. H. Lin and W. F. Hsieh, “Analytical design of symmetrical Kerr-lens mode-locking laser cavities,” J. Opt. Soc. Am B 11, 737 (1994).
[CrossRef]

Lui, Y.

Lyan, S. A.

Magni, V.

Martinez, O. E.

Nakano, H.

Pallero, P. L.

Pan, C. L.

Pearson, G. W.

C. Radzewicz, G. W. Pearson, and J. S. Crasinski, “Use of ZnS as an additional nonlinear intracavity self-focusing element in a Ti:sapphire self-mode locked laser,” Opt. Commun. 102, 464 (1993).
[CrossRef]

Pruncal, P. R.

Pu, N. W.

Radzewicz, C.

C. Radzewicz, G. W. Pearson, and J. S. Crasinski, “Use of ZnS as an additional nonlinear intracavity self-focusing element in a Ti:sapphire self-mode locked laser,” Opt. Commun. 102, 464 (1993).
[CrossRef]

Rivzi, N. H.

Sarukara, N.

Shieh, J.-M.

Sibbett, W.

Spence, D. E.

Spielmann, Ch.

Sun, K. W.

t’Hooft, G. W.

Tamura, K.

Taylor, J. R.

Wang, J.

J. Opt. Soc. Am B (1)

K. H. Lin and W. F. Hsieh, “Analytical design of symmetrical Kerr-lens mode-locking laser cavities,” J. Opt. Soc. Am B 11, 737 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

C. Radzewicz, G. W. Pearson, and J. S. Crasinski, “Use of ZnS as an additional nonlinear intracavity self-focusing element in a Ti:sapphire self-mode locked laser,” Opt. Commun. 102, 464 (1993).
[CrossRef]

Opt. Lett. (14)

N. W. Pu, J.-M. Shieh, Y. Lai, and C. L. Pan, “Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser,” Opt. Lett. 20, 163 (1995).
[CrossRef] [PubMed]

S. Chen and J. Wang, “Self-starting issues of passive self-focusing mode locking,” Opt. Lett. 16, 1689 (1991).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42 (1991).
[CrossRef] [PubMed]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220 (1993).
[CrossRef] [PubMed]

M. Lai, “Self-starting, self-mode-locked Ti:sapphire laser,” Opt. Lett. 19, 722 (1994).
[CrossRef] [PubMed]

G. Cerullo, S. De Silvestri, V. Magni, and P. L. Pallero, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807 (1994);G. Cerullo, S. De Silvestri, V. Magni, and O. Zvelto, “Self-starting femtosecond Kerr lens mode-locked Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1994), paper CWA57.
[CrossRef] [PubMed]

G. Cerullo, S. De Silvestri, and V. Magni, “Self-starting Kerr lens mode-locking of a Ti:sapphire laser,” Opt. Lett. 19, 1040 (1994).
[CrossRef] [PubMed]

P. F. Curley and A. I. Ferguson, “Actively mode-locked Ti:sapphire laser producing transform-limited pulses of 150-fs duration,” Opt. Lett. 16, 1016 (1991).
[CrossRef] [PubMed]

N. Sarukara, Y. Ishida, and H. Nakano, “Generation of 50-fs pulses from a pulse compressed, cw, passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 153 (1991).

U. Keller, G. W. t’Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022 (1991).
[CrossRef] [PubMed]

Y. Lui, K. W. Sun, P. R. Pruncal, and S. A. Lyan, “Simple method to start and maintain self-mode-locking of a Ti:sapphire laser,” Opt. Lett. 17, 1219 (1992).
[CrossRef]

N. H. Rivzi, R. M. W. French, and J. R. Taylor, “Continuously self-mode-locked Ti:sapphire laser that produces sub-50-fs pulses,” Opt. Lett. 17, 279 (1992).
[CrossRef]

F. Krausz, T. Brabec, and Ch. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16, 235 (1991).
[CrossRef] [PubMed]

H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331 (1991).
[CrossRef] [PubMed]

Other (1)

After completion of this research we found that the autocorrelator that we had used is rather dispersive, and the autocorrelation trace in Fig. 6(b) must be corrected by a factor of 1.4–1.5, so the actual pulse width is 100–110 fs.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout of the self-starting self-mode-locked Ti:sapphire laser.

Fig. 2
Fig. 2

Picosecond pulse train generated by the self-starting self-mode-locked Ti:sapphire laser.

Fig. 3
Fig. 3

(a) Autocorrelation trace and (b) the corresponding spectrum of the self-starting self-mode-locked Ti:sapphire laser operating in the picosecond regime.

Fig. 4
Fig. 4

Long-term stability of the SH intensity generated by a picosecond pulse train from self-starting Kerr-lens mode-locked laser (a) with and (b) without a birefringent filter.

Fig. 5
Fig. 5

SH signal intensity. Arrows indicate the opening times of the mechanical shutter. The delay in the rise of the SH signal determines the mode-locking starting time. Self-starting in the case of periodic interruptions is shown in the inset.

Fig. 6
Fig. 6

(a) Autocorrelation trace17 and (b) the corresponding spectrum of the self-starting self-mode-locked laser in the femtosecond regime of operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ P f 1 > T R / τ c ,

Metrics