Abstract

We present an experimental and theoretical investigation of the role of group-velocity dispersion in the generation of picosecond pulses from a sliding-frequency fiber loop laser.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
    [CrossRef]
  2. H. Sabert and E. Brinkmeyer, in Optical Amplifiers and their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper TuD4;Electron. Lett. 29, 2122 (1993).
  3. F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
    [CrossRef]
  4. H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave Technol. (to be published).
  5. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
    [CrossRef]
  6. Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
    [CrossRef]
  7. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  8. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [CrossRef]
  9. H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
    [CrossRef]
  10. O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).
  11. P. A. Belanger, J. Opt. Soc. Am. B 8, 2077 (1991);H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  12. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
    [CrossRef]
  13. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 19, 198 (1994).
    [CrossRef]
  14. N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
    [CrossRef]
  15. P. A. Belanger, L. Gagnon, and C. Paré, Opt. Lett. 17, 943 (1992).
    [CrossRef]
  16. C. Paré, L. Gagnon, and P. A. Belanger, Opt. Commun. 74, 228 (1989).
    [CrossRef]

1995 (1)

1994 (4)

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 19, 198 (1994).
[CrossRef]

1993 (1)

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

1992 (2)

1991 (1)

1990 (1)

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[CrossRef]

1989 (1)

C. Paré, L. Gagnon, and P. A. Belanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

1985 (1)

O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).

1977 (1)

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

1975 (1)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Belanger, P. A.

Bossalini, L.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, in Optical Amplifiers and their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper TuD4;Electron. Lett. 29, 2122 (1993).

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave Technol. (to be published).

Chen, C.-J.

Evangelides, S. G.

Fontana, F.

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Fork, R. L.

O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).

Franco, P.

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Gagnon, L.

P. A. Belanger, L. Gagnon, and C. Paré, Opt. Lett. 17, 943 (1992).
[CrossRef]

C. Paré, L. Gagnon, and P. A. Belanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).

Hale, P. D.

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[CrossRef]

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Kodama, Y.

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

Kowalski, F. V.

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[CrossRef]

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Martinez, O. E.

O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).

Menyuk, C. R.

Midrio, M.

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

Neubelt, M. J.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Paré, C.

P. A. Belanger, L. Gagnon, and C. Paré, Opt. Lett. 17, 943 (1992).
[CrossRef]

C. Paré, L. Gagnon, and P. A. Belanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Pereira, N. R.

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Romagnoli, M.

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Sabert, H.

H. Sabert and E. Brinkmeyer, in Optical Amplifiers and their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper TuD4;Electron. Lett. 29, 2122 (1993).

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave Technol. (to be published).

Stenflo, L.

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Town, G.

Wabnitz, S.

M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. Town, J. Opt. Soc. Am. B 12, 72 (1995).
[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

Wai, P. K. A.

Electron. Lett. (3)

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[CrossRef]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. 2, 753 (1985).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

C. Paré, L. Gagnon, and P. A. Belanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Opt. Lett. (3)

Phys. Fluids (1)

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Other (2)

H. Sabert and E. Brinkmeyer, in Optical Amplifiers and their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper TuD4;Electron. Lett. 29, 2122 (1993).

H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of the laser. Three different fibers (A, B, C) were used to control the average GVD of the fiber loop: A, LA = 110 m, β2 = −20 ps2/km; B, LB = 58 m, β2 = 0 at 1550 nm; and C, LC = 40 m, β2 = +83 ps2/km. AOM, acousto-optical modulator.

Fig. 2
Fig. 2

Schematic of the acousto-optic modulator and filter (AOMF): ① unidirectional transducer, ② polarization beam splitter, ③acoustic waveguide, ④Ti-indiffused region, ⑤acoustic absorber.

Fig. 3
Fig. 3

Theoretical dependence of pulse width on the dispersion coefficient D for β = 3δ = 0.15 and γ = 0 (solid curve), γ = −0.035 (dashed curve), and γ = −0.07 (dotted–dashed curve).

Fig. 4
Fig. 4

Pulse spectral width ξ = 1 + ν 2 / ρ versus cavity dispersion D for the same parameters as in Fig. 3.

Fig. 5
Fig. 5

Pulse amplitude A versus dispersion D for the parameters of Fig. 3.

Fig. 6
Fig. 6

Same as in Fig. 3 for β = 0.16, δ = −0.02, and γ = −0.2 (solid curve), γ = −0.4 (dashed curve), and γ = −0.8 (dotted–dashed curve).

Fig. 7
Fig. 7

Same as in Fig. 4 for the parameters of Fig. 6.

Fig. 8
Fig. 8

Same as in Fig. 5 for the parameters of Fig. 6.

Fig. 9
Fig. 9

Theoretical pulse amplitude |u| (dashed curve) and its chirp C (solid curve) versus time T in the normal dispersion regime (D = +1).

Fig. 10
Fig. 10

Calculated intensity profile and spectrum of the steady-state pulses in the cavity in the normal dispersion regime and with fast saturable absorption.

Fig. 11
Fig. 11

Contour plot of the intensity of the steady-state pulse of Fig. 10.

Fig. 12
Fig. 12

Same as in Fig. 11 but with the sign of GVD reversed.

Fig. 13
Fig. 13

Same as in Fig. 10 without fast saturable absorption and with a large frequency-shifting rate.

Fig. 14
Fig. 14

(a) Experimental autocorrelation and (b) spectrum at the laser output. SH, second harmonic.

Fig. 15
Fig. 15

Experimental dependence of laser pulse width versus operating wavelength for an average cavity GVD β2 = −15.3 ps2/km (squares), β2 = +1 ps2/km (triangles), and β2 = +51.5 ps2/km (circles).

Fig. 16
Fig. 16

(a) Autocorrelation and (b) spectrum of the compressed pulses from the fiber tail. SH, second harmonic.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i u Z D 2 2 u T 2 i β 2 u T 2 i δ u + ( 1 + i γ ) | u | 2 u i σ | u | 4 u + α T u = 0 ,
α = Δ f t 0 3 z l β r , β = 2 Δ Ω 2 z l β r ,
u = A [ sech ( T / ρ ) ] 1 i ν exp ( i Γ Z ) ,
ν = a ± a 2 + 2 , a = 3 ( γ β + D / 2 ) β D γ / 2 , ρ 2 = ( β ν 2 β + ν D ) / δ , A 2 = ( D ν 2 / 2 D 3 ν β ) / ρ 2 , Γ = ( D ν 2 / 2 D / 2 2 β ν ) / ρ 2 .
z U i 2 T T U i | U | 2 U = Γ U ,
H ( Ω ) 1 ( 1 + 2 i Ω / B ) ,
S ( T ) = C exp ( i α 0 T ) ,
G ( T ) = exp [ Γ s / ( 1 + | U | 2 / I s ) ] .
U ( T , Z = 0 ) = a 0 sech ( T / A ) .

Metrics