Abstract

Optical properties of Er3+-doped fluoride glasses in the pseudoternary systems MFn–BaF2–YF3, where M is Zr, Hf, Al, Sc, Ga, In, or Zn, were investigated, and the variation of the local structure was discussed. Of the three Judd–Ofelt Ωt parameters (t – 2, 4, 6) that dominate the ƒ–ƒ transition probabilities of Er3+ ions, Ω2 increased as the cationic field strength of network-forming Mn+ ions was increased. Ω6 showed a correlation with the Er—F bond length. The intensity of the 4S3/24I15/2 green upconversion luminescence at 0.55 μm induced by 0.80-μm laser pumping varied with the kind of MFn; the InF3-based glass showed the largest intensity, and the AlF3-based glass the lowest. The quantum efficiency and nonradiative decay rates of the 4S3/2 level changed with Mn+ and were not strongly dependent on the cutoff phonon energy of the host. The transition probability of the excitation process at 0.80-μm absorption and that of 0.55-μm emission can play a more important role in the upconversion intensity than the nonradiative loss in the present fluoride glasses with a low multiphonon decay rate.

© 1995 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription