Abstract

The thermal dependences of the principal refractive indices of lithium triborate (LBO) have been measured over an extended temperature range of 20–200 °C with a Michelson interferometer. The data obtained are critically evaluated by prediction of the temperature dependences of phase matching and the temperature bandwidth of LBO in a wide range of circumstances (which include optical parametric oscillation, second-harmonic generation, and sum-frequency-mixing generation), and close agreement with experimental observation is obtained in most cases.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tang, Y. Cui, and M. H. Dunn, “Lithium triborate optical parametric oscillator pumped at 266 nm,” Opt. Lett. 17, 192–194 (1992).
    [CrossRef] [PubMed]
  2. M. Ebrahimzadeh, G. Robertson, and M. H. Dunn, “Efficient ultraviolet LiB3O5 optical parametric oscillator,” Opt. Lett. 16, 767–769 (1991).
    [CrossRef] [PubMed]
  3. G. Robertson, A. Henderson, and M. H. Dunn, “Broadly tunable LiB3O5 optical parametric oscillator,” Appl. Phys. Lett. 60, 271–273 (1992).
    [CrossRef]
  4. F. Hanson and D. Dick, “Blue parametric generation from temperature-tuned LiB3O5,” Opt. Lett. 16, 205–207 (1991).
    [CrossRef] [PubMed]
  5. Y. Cui, M. H. Dunn, C. J. Norrie, W. Sibbett, B. D. Sinclair, Y. Tang, and J. A. C. Terry, “All-solid-state optical parametric oscillator for the visible,” Opt. Lett. 17, 646–648 (1992).
    [CrossRef] [PubMed]
  6. F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
    [CrossRef]
  7. F. G. Colville, M. J. Padgett, A. J. Henderson, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillator pumped in the ultraviolet,” Opt. Lett. 18, 1065–1067 (1993).
    [CrossRef] [PubMed]
  8. F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
    [CrossRef] [PubMed]
  9. M. Ebrahimzadeh, G. J. Hall, and A. I. Ferguson, “Singly resonant, all-solid-state, mode-locked LiB3O5 optical parametric oscillator tunable from 652 to 2.65 μm,” Opt. Lett. 17, 652–654 (1992).
    [CrossRef] [PubMed]
  10. K. Kato, “Parametric oscillation in LiB3O5 pumped at 0.532 μm,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
    [CrossRef]
  11. S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
    [CrossRef]
  12. S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
    [CrossRef]
  13. L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
    [CrossRef]
  14. S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
    [CrossRef]
  15. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Phase-matched second-harmonic generation and growth of a LiB3O5 crystal,” J. Opt. Soc. Am. B 9, 1128–1133 (1992).
    [CrossRef]
  16. J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
    [CrossRef]
  17. K. Kato, “Tunable UV generation to 0.235 μm in LiB3O5,” IEEE J. Quantum Electron. 26, 1173–1175 (1990).
    [CrossRef]
  18. M. S. Webb and S. P. Velsko, “Direct measurements of thermal sensitivities for frequency conversion of 1.064 μm laser light in lithium triborate,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper Tuk32.
  19. D. W. Chen and J. T. Lin, “Temperature-tuned phase-matching properties of LiB3O5 for Ti:sapphire laser frequency doubling,” IEEE J. Quantum Electron. 29, 307–310 (1993).
    [CrossRef]

1993 (5)

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

F. G. Colville, M. J. Padgett, A. J. Henderson, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillator pumped in the ultraviolet,” Opt. Lett. 18, 1065–1067 (1993).
[CrossRef] [PubMed]

F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
[CrossRef] [PubMed]

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

D. W. Chen and J. T. Lin, “Temperature-tuned phase-matching properties of LiB3O5 for Ti:sapphire laser frequency doubling,” IEEE J. Quantum Electron. 29, 307–310 (1993).
[CrossRef]

1992 (5)

1991 (4)

F. Hanson and D. Dick, “Blue parametric generation from temperature-tuned LiB3O5,” Opt. Lett. 16, 205–207 (1991).
[CrossRef] [PubMed]

M. Ebrahimzadeh, G. Robertson, and M. H. Dunn, “Efficient ultraviolet LiB3O5 optical parametric oscillator,” Opt. Lett. 16, 767–769 (1991).
[CrossRef] [PubMed]

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

1990 (4)

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
[CrossRef]

K. Kato, “Tunable UV generation to 0.235 μm in LiB3O5,” IEEE J. Quantum Electron. 26, 1173–1175 (1990).
[CrossRef]

K. Kato, “Parametric oscillation in LiB3O5 pumped at 0.532 μm,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

An, Z.

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Bosenberg, W. R.

Chen, C.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

Chen, D. W.

D. W. Chen and J. T. Lin, “Temperature-tuned phase-matching properties of LiB3O5 for Ti:sapphire laser frequency doubling,” IEEE J. Quantum Electron. 29, 307–310 (1993).
[CrossRef]

Colville, F. G.

Cui, Y.

Dai, G. Q.

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Davis, L.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Dick, D.

Dunn, M. H.

Ebrahimzadeh, M.

Ferguson, A. I.

Hall, G. J.

Hanson, F.

Henderson, A.

G. Robertson, A. Henderson, and M. H. Dunn, “Broadly tunable LiB3O5 optical parametric oscillator,” Appl. Phys. Lett. 60, 271–273 (1992).
[CrossRef]

Henderson, A. J.

Hua, Y. N.

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

Huang, C.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Huang, F.

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

Huang, J. Y.

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

Huang, L.

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

Huang, Q. Z.

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Kato, K.

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
[CrossRef]

K. Kato, “Tunable UV generation to 0.235 μm in LiB3O5,” IEEE J. Quantum Electron. 26, 1173–1175 (1990).
[CrossRef]

K. Kato, “Parametric oscillation in LiB3O5 pumped at 0.532 μm,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

Lane, R. J.

Liang, D. K.

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Lin, J. T.

D. W. Chen and J. T. Lin, “Temperature-tuned phase-matching properties of LiB3O5 for Ti:sapphire laser frequency doubling,” IEEE J. Quantum Electron. 29, 307–310 (1993).
[CrossRef]

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
[CrossRef]

Lin, S.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

Ling, J.

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

Montgomery, J. L.

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
[CrossRef]

Norrie, C. J.

Padgett, M. J.

Robertson, G.

G. Robertson, A. Henderson, and M. H. Dunn, “Broadly tunable LiB3O5 optical parametric oscillator,” Appl. Phys. Lett. 60, 271–273 (1992).
[CrossRef]

M. Ebrahimzadeh, G. Robertson, and M. H. Dunn, “Efficient ultraviolet LiB3O5 optical parametric oscillator,” Opt. Lett. 16, 767–769 (1991).
[CrossRef] [PubMed]

Shen, Y. R.

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

Sibbett, W.

Sinclair, B. D.

Tang, C. L.

Tang, Y.

Terry, J. A. C.

Ukachi, T.

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

M. S. Webb and S. P. Velsko, “Direct measurements of thermal sensitivities for frequency conversion of 1.064 μm laser light in lithium triborate,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper Tuk32.

Webb, M.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

Webb, M. S.

M. S. Webb and S. P. Velsko, “Direct measurements of thermal sensitivities for frequency conversion of 1.064 μm laser light in lithium triborate,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper Tuk32.

Wei, L.

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Wu, B.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

Xie, F.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

Yin, B. L.

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

Zhang, J.

Appl. Phys. Lett. (3)

G. Robertson, A. Henderson, and M. H. Dunn, “Broadly tunable LiB3O5 optical parametric oscillator,” Appl. Phys. Lett. 60, 271–273 (1992).
[CrossRef]

F. Huang, L. Huang, B. L. Yin, and Y. N. Hua, “Generation of 415.9–482.6 nm tunable intense picosecond single pulse in LiB3O5,” Appl. Phys. Lett. 62, 672–674 (1993).
[CrossRef]

S. Lin, J. Y. Huang, J. Ling, C. Chen, and Y. R. Shen, “Optical parametric amplification in a lithium tiborate crystal tunable from 0.65 to 2.5 μm,” Appl. Phys. Lett. 59, 2805–2807 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991).
[CrossRef]

K. Kato, “Tunable UV generation to 0.235 μm in LiB3O5,” IEEE J. Quantum Electron. 26, 1173–1175 (1990).
[CrossRef]

K. Kato, “Parametric oscillation in LiB3O5 pumped at 0.532 μm,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

D. W. Chen and J. T. Lin, “Temperature-tuned phase-matching properties of LiB3O5 for Ti:sapphire laser frequency doubling,” IEEE J. Quantum Electron. 29, 307–310 (1993).
[CrossRef]

J. Appl. Phys. (1)

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matched retracing behavior for second-harmonic generation in LiB3O5,” J. Appl. Phys. 73, 1029–1034 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

L. Wei, G. Q. Dai, Q. Z. Huang, Z. An, and D. K. Liang, “Anisotropic thermal-expansion of LiB3O5,” J. Phys. D 23, 1073–1075 (1990).
[CrossRef]

Opt. Commun. (1)

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80, 159–162 (1990).
[CrossRef]

Opt. Lett. (7)

Other (1)

M. S. Webb and S. P. Velsko, “Direct measurements of thermal sensitivities for frequency conversion of 1.064 μm laser light in lithium triborate,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper Tuk32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Comparison of three calculated curves for dny/dT against T evaluated with the use of different thermal-expansion coefficients αT.

Fig. 3
Fig. 3

Curves of the three principal axes’s thermo-optical coefficients of LBO against temperature.

Fig. 4
Fig. 4

Temperature-tuning curves for type-II NCPM LBO OPO’s with a 266-nm pump. The circles represent our experimental results; the data that produced the solid curve were calculated with the use of our thermo-optical coefficients, and the data that produced the dotted line were calculated with the use of Velsko’s thermo-optical coefficients.

Fig. 5
Fig. 5

Temperature-tuning curves for type-II NCPM LBO OPO’s with a 355-nm pump. The curves’ descriptions are the same as described in Fig. 4.

Fig. 6
Fig. 6

Temperature-tuning curves for type-I NCPM LBO OPO’s with a 532-nm pump. The dotted curve was calculated with our thermo-optical coefficients, the curve made of X’s was calculated with Velsko’s thermo-optical coefficients, and the curve made of circles is plotted from the experimental curve given in Fig. 2(b) of Ref 11.

Fig. 7
Fig. 7

Calculated phase-matching curves for both type-I and type-II NCPM LBO second-harmonic generation with use of our thermo-optical coefficients (solid curve) and with the use of Velsko’s coefficients (dotted curve). The circles are plotted from the experimental curve given in Ref. 14.

Tables (1)

Tables Icon

Table 1 TPM(°C) and ΔTL (°C cm, FWHM) for Some Frequency Conversion Processes of LBO

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

λ 2 d F d T = L d n d T + ( n 1 ) α T L o ,
L = L 0 + L 0 0 T α T d T ,
n = n 0 + T 0 T d n d T d T ,
α T = 1 L 0 d L d T ,
( d n j d T ) i = [ λ 2 d F i j d T ( n j 1 ) α T i L 0 ] / L ,
d n x d T = ( 1.8 ± 0.2 ) × 10 6 ,
d n y d T = ( 13.6 ± 0.1 ) × 10 6 ,
d n z d T = [ 6.3 ± 0.6 ( 2.1 ± 0.8 ) λ ] × 10 6 ( λ in μ m ) .
d F x y d T = 0.63063 + 7.9448 × 10 3 T 1.6708 × 10 5 T 2 + 4.2576 × 10 8 T 3 1.1343 × 10 10 T 4 ,
d F x z d T = 1.0236 + 7.4566 × 10 3 T ,
d F z x d T = 0.87683 1.7194 × 10 4 T 3.3417 × 10 6 T 2 ,
d F z y d T = 0.55048 1.1711 × 10 2 T + 1.2482 × 10 4 T 2 7.3664 × 10 7 T 3 + 1.4152 × 10 9 T 4 .
a ( T ) = 8.4811 ( 1 + 4.7325 × 10 5 T + 2.3162 × 10 7 T 2 2.6507 × 10 10 T 3 ) ,
b ( T ) = 7.4125 ( 1 + 2.9859 × 10 5 T + 1.4154 × 10 8 T 2 2.9336 × 10 11 T 3 ) .
err = i = 1 m [ L obs ( i ) L fit ( i ) ] 2 m n ,
α T = 1 L o d L fit ( T ) d T ,
α T x = 6.2600 × 10 5 + 3.3212 × 10 7 T 5.8449 × 10 10 T 2 ,
α T z = 2.9859 × 10 5 + 2.8308 × 10 8 T 8.8008 × 10 11 T 2 .
( d n y d T ) z = [ d F z y d T λ 2 ( n y 1 ) α T z L 0 ] / L ,
( d n x d T ) z = [ d F z x d T λ 2 ( n x 1 ) α T z L 0 ] / L .
( d n z d T d n y d T ) x = [ ( d F x z d T d F x y d T ) λ 2 ( n z n y ) α T x L 0 ] / L ( d F x z d T d F x y d T ) λ 2 L 0 ( n z 0 n y 0 ) α T x ,
| Δ ( d n z d T d n y d T ) x | 0.015 Δ α T x .
| Δ ( d n z d T ) x | ( n z 0 1 ) Δ α T x = 0.614 Δ α T x .
d n z d T = ( d n y d T ) z + ( d n z d T d n y d T ) x .
d n x d T = 2.0342 × 10 7 1.9697 × 10 8 T 1.4415 × 10 11 T 2 ,
d n y d T = 1.0748 × 10 5 7.1034 × 10 8 T 5.7387 × 10 11 T 2 ,
d n z d T = 8.5998 × 10 7 1.5476 × 10 7 T + 9.4675 × 10 10 T 2 2.2375 × 10 12 T 3 .

Metrics