Abstract

We have experimentally studied the various dynamical regimes appearing in an optical parametric oscillator that is simultaneously resonant for the pump, the signal, and the idler modes, and we have observed bistability and instability. When the pump intensity is swept through the static threshold value in the monostable region, we observe that the oscillation is delayed by a time interval that is much larger than the characteristic evolution times of the system. The measurements are in good agreement with the theoretical predictions.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the special issue on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1655–1791 (1993).
  2. L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
    [Crossref] [PubMed]
  3. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
    [Crossref] [PubMed]
  4. P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
    [Crossref]
  5. L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
    [Crossref]
  6. M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887–2892 (1985).
    [Crossref] [PubMed]
  7. C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
    [Crossref]
  8. C. Fabre and S. Reynaud, “Quantum noise in optical systems: a semiclassical approach,” in Les Houches Session 53, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (Elsevier, New York, 1992), pp. 675–711.
  9. P. Mandel and T. Erneux, “Temporal aspects of absorptive optical bistability,” Phys. Rev. A 28, 896–909 (1983).
    [Crossref]
  10. P. Mandel and T. Erneux, “Laser Lorenz equations with a time dependent parameter,” Phys. Rev. Lett. 53, 1818–1820 (1984).
    [Crossref]
  11. F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
    [Crossref]
  12. W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
    [Crossref]
  13. In Ref. 5, the dynamical behavior was studied for a degenerate OPO. Reference 8 demonstrates that all the results of Ref. 5 can be extended to the nondegenerate case provided that the signal and idler modes have the same transmission and loss coefficients.
  14. B. Morris and F. Moss, “Postponed bifurcations of a quadratic map with a swept parameter,” Phys. Lett. 118A, 117–120 (1986).
  15. G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
    [Crossref] [PubMed]
  16. H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
    [Crossref] [PubMed]
  17. In the case of a degenerate parametric oscillator a1is the common signal and idler field amplitude. In the nondegenerate case, α1is equal to the sum of the amplitude of the signal and idler fields.
  18. This method that treats quantum fluctuations as fluctuations of classical fields is equivalent to the Wigner representation, with truncation of higher-order terms.See R. Graham, “Statistical theory of instabilities in stationary nonequilibrium systems with applications to lasers and nonlinear optics,” in Quantum Statistics in Optics and Solid State Physics, G. Hohler, ed., Vol. 66 of Springer Tracts in Modern Physics (Springer-Verlag, New York, 1973);S. Reynaud and A. Heidmann, “A semiclassical linear input-output transformation for quantum fluctuations,” Opt. Commun. 71, 209–214 (1989).
    [Crossref]

1993 (1)

See, for example, the special issue on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1655–1791 (1993).

1990 (1)

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

1989 (2)

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
[Crossref] [PubMed]

1988 (1)

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

1987 (2)

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

1986 (3)

B. Morris and F. Moss, “Postponed bifurcations of a quadratic map with a swept parameter,” Phys. Lett. 118A, 117–120 (1986).

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

1985 (1)

M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887–2892 (1985).
[Crossref] [PubMed]

1984 (1)

P. Mandel and T. Erneux, “Laser Lorenz equations with a time dependent parameter,” Phys. Rev. Lett. 53, 1818–1820 (1984).
[Crossref]

1983 (1)

P. Mandel and T. Erneux, “Temporal aspects of absorptive optical bistability,” Phys. Rev. A 28, 896–909 (1983).
[Crossref]

1981 (1)

P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Arecchi, F.

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Broggi, G.

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

Bromley, D.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Camy, G.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

Collett, M. J.

M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887–2892 (1985).
[Crossref] [PubMed]

Colombo, A.

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

Drummond, P.

P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Erneux, T.

P. Mandel and T. Erneux, “Laser Lorenz equations with a time dependent parameter,” Phys. Rev. Lett. 53, 1818–1820 (1984).
[Crossref]

P. Mandel and T. Erneux, “Temporal aspects of absorptive optical bistability,” Phys. Rev. A 28, 896–909 (1983).
[Crossref]

Fabre, C.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

C. Fabre and S. Reynaud, “Quantum noise in optical systems: a semiclassical approach,” in Les Houches Session 53, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (Elsevier, New York, 1992), pp. 675–711.

Gadomski, W.

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Giacobino, E.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

Graham, R.

This method that treats quantum fluctuations as fluctuations of classical fields is equivalent to the Wigner representation, with truncation of higher-order terms.See R. Graham, “Statistical theory of instabilities in stationary nonequilibrium systems with applications to lasers and nonlinear optics,” in Quantum Statistics in Optics and Solid State Physics, G. Hohler, ed., Vol. 66 of Springer Tracts in Modern Physics (Springer-Verlag, New York, 1973);S. Reynaud and A. Heidmann, “A semiclassical linear input-output transformation for quantum fluctuations,” Opt. Commun. 71, 209–214 (1989).
[Crossref]

Green, C.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Hall, J.

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Heidmann, A.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

Horowicz, R.

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

Horowicz, R. J.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

Kaige, W.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Lugiato, L.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

Mandel, P.

H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
[Crossref] [PubMed]

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

P. Mandel and T. Erneux, “Laser Lorenz equations with a time dependent parameter,” Phys. Rev. Lett. 53, 1818–1820 (1984).
[Crossref]

P. Mandel and T. Erneux, “Temporal aspects of absorptive optical bistability,” Phys. Rev. A 28, 896–909 (1983).
[Crossref]

McNeil, K.

P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Meucci, R.

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Morris, B.

B. Morris and F. Moss, “Postponed bifurcations of a quadratic map with a swept parameter,” Phys. Lett. 118A, 117–120 (1986).

Moss, F.

B. Morris and F. Moss, “Postponed bifurcations of a quadratic map with a swept parameter,” Phys. Lett. 118A, 117–120 (1986).

Narducci, L.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Oldano, C.

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

Reynaud, S.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

C. Fabre and S. Reynaud, “Quantum noise in optical systems: a semiclassical approach,” in Les Houches Session 53, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (Elsevier, New York, 1992), pp. 675–711.

Roversi, J.

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Sharp, W.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Squicciarini, M.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Tredicce, J.

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Vadacchino, M.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

Van der Broeck, C.

H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
[Crossref] [PubMed]

Walls, D. F.

M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887–2892 (1985).
[Crossref] [PubMed]

P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Wu, H.

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Zeghlache, H.

H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

See, for example, the special issue on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1655–1791 (1993).

Nuovo Cimento (1)

L. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento 10, 959–977 (1988).
[Crossref]

Opt. Acta (1)

P. Drummond, K. McNeil, and D. F. Walls, “Nonequilibrium transitions in subsecond harmonic generation,” Opt. Acta 28, 211–225 (1981).
[Crossref]

Opt. Commun. (2)

F. Arecchi, W. Gadomski, R. Meucci, and J. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

W. Sharp, M. Squicciarini, D. Bromley, C. Green, J. Tredicce, and L. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Phys Rev. Lett. (1)

L. A. Wu, H. J. Kimble, J. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Phys. Lett. (1)

B. Morris and F. Moss, “Postponed bifurcations of a quadratic map with a swept parameter,” Phys. Lett. 118A, 117–120 (1986).

Phys. Rev. A (4)

G. Broggi, A. Colombo, L. Lugiato, and P. Mandel, “Influence of white noise on delayed bifurcations,” Phys. Rev. A 33, 3635–3637 (1986).
[Crossref] [PubMed]

H. Zeghlache, P. Mandel, and C. Van der Broeck, “Influence of noise on delayed bifurcations,” Phys. Rev. A 40, 286–294 (1989).
[Crossref] [PubMed]

P. Mandel and T. Erneux, “Temporal aspects of absorptive optical bistability,” Phys. Rev. A 28, 896–909 (1983).
[Crossref]

M. J. Collett and D. F. Walls, “Squeezing spectra for nonlinear optical systems,” Phys. Rev. A 32, 2887–2892 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

P. Mandel and T. Erneux, “Laser Lorenz equations with a time dependent parameter,” Phys. Rev. Lett. 53, 1818–1820 (1984).
[Crossref]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of squeezed photon noise on twin laserlike beams,” Phys. Rev. Lett. 59, 2555–2558 (1987).
[Crossref] [PubMed]

Quantum Opt. (1)

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
[Crossref]

Other (4)

C. Fabre and S. Reynaud, “Quantum noise in optical systems: a semiclassical approach,” in Les Houches Session 53, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (Elsevier, New York, 1992), pp. 675–711.

In the case of a degenerate parametric oscillator a1is the common signal and idler field amplitude. In the nondegenerate case, α1is equal to the sum of the amplitude of the signal and idler fields.

This method that treats quantum fluctuations as fluctuations of classical fields is equivalent to the Wigner representation, with truncation of higher-order terms.See R. Graham, “Statistical theory of instabilities in stationary nonequilibrium systems with applications to lasers and nonlinear optics,” in Quantum Statistics in Optics and Solid State Physics, G. Hohler, ed., Vol. 66 of Springer Tracts in Modern Physics (Springer-Verlag, New York, 1973);S. Reynaud and A. Heidmann, “A semiclassical linear input-output transformation for quantum fluctuations,” Opt. Commun. 71, 209–214 (1989).
[Crossref]

In Ref. 5, the dynamical behavior was studied for a degenerate OPO. Reference 8 demonstrates that all the results of Ref. 5 can be extended to the nondegenerate case provided that the signal and idler modes have the same transmission and loss coefficients.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the experimental setup.

Fig. 2
Fig. 2

Experimental variation of the reflected pump light intensity (a) and of the sum of the intensities of the infrared signal and idler beams (b) when the OPO cavity length is scanned through a pump beam resonance.

Fig. 3
Fig. 3

Theoretical variation of the reflected pump light (a) and of the generated signal and idler beams (b) when the OPO cavity length is scanned through a pump beam resonance. δ0 varies between −5 and +5, and the OPO resonances are chosen at Δ0 = −2, 0, 2. The pump field is 50 times above the minimum threshold at exact triple resonance, and the ratio between the cavity finesses for the signal and pump modes is 30.

Fig. 4
Fig. 4

Variation of the OPO total output power as a function of pump power in the region of bistability. The parabolic curve is a theoretical fit according to formula (3) and choosing Δ0 = 2, Δ1 = 2.6.

Fig. 5
Fig. 5

Experimental recording of the OPO total output power as in function of time a the region of instability. The pump intensity is 100 mW.

Fig. 6
Fig. 6

Experimental variation of the OPO total output power as a function of time when the pump intensity is linearly scanned in a region of stable constant output.

Fig. 7
Fig. 7

Theoretical variation of the OPO output power as a function of time when the pump intensity is linearly scanned without added noise in the case of (a) zero detunings (Δ0 = Δ1 = 0) and (b) bistability in the steady-state regime (Δ0 = 2, Δ1 =6). The dashed line gives the steady-state solution.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ 0 Δ 1 > 1 ,
Δ i = 2 δ i / κ i , i = 0 , 1 ,
I OPO = Δ 0 Δ 1 1 ± I pump ( Δ 0 + Δ 1 ) 2 , for I Pump > ( Δ 0 + Δ 1 ) 2 , I OPO = 0 , for I pump < ( 1 + Δ 0 2 ) ( 1 + Δ 1 2 ) ,
4 δ 0 ( δ 0 + 2 δ 1 ) < κ 0 ( κ 0 + 2 κ 1 ) .
τ α ˙ 1 ( t ) = ( r 1 ) α 1 ( t ) + χ α 0 ( t ) α 1 * ( t ) ,
α 0 threshold = 1 r χ .
α 1 ( t ) = α 1 ( 0 ) exp { 0 t d t χ [ α 0 ( t ) α 0 threshold ] / τ } .
τ α ˙ 1 ( t ) = ( r 1 ) α 1 ( t ) + χ ( α 0 ( t ) + δ α 0 ) α 1 * ( t ) + t δ α 1 in ,
δ α 1 in ( t ) δ α 1 in * ( t ) = ½ ( t t ) .

Metrics