Abstract

The nature of optical scattering from laser-induced thermal gratings created in the gas phase is investigated. Thermal gratings are produced with the illumination geometry used to perform degenerate four-wave mixing (DFWM) measurements. Such scattering from thermal gratings can act as a phase-matched interference signal. A solution to the linearized hydrodynamic equations is developed to model the dynamics of the thermal grating. Predictions of this model that uses realistic gas properties are shown to compare favorably with laboratory measurements. The model includes the effects of finite-rate energy deposition, damping by viscosity and thermal conduction, mass diffusion of the excited-state grating, and electrostrictive compression.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription