Abstract

AgGaS2 has been used to generate more than 2 μW of cw mid-infrared radiation near 3.2 μm by difference-frequency mixing of the outputs of an extended-cavity diode laser near 795 nm (pump wave) an a compact diode-pumped Nd:YAG laser at 1064 nm (signal wave). An external ring enhancement cavity was used to build up the signal power inside the nonlinear crystal by as much as 14.5 times. The novel mid-infrared source incorporating a single diode laser could be angle-tuned from 3.155 to 3.423 μm (from 3170 to 2921 cm−1). This system was used to detect the Doppler-broadened fundamental ν3-asymmetric stretch vibration of methane (CH4) by both direct and wavelength-modulation absorption spectroscopy.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Pine, “Doppler-limited molecular spectroscopy by difference-frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974);M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
    [CrossRef]
  2. P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous-wave infrared laser spectrometer based on difference-frequency generation in AgGaS2for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
    [CrossRef]
  3. A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, “Optimization of a midinfrared high-resolution difference-frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962 (1992).
    [CrossRef]
  4. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
    [CrossRef]
  5. W. Wang and M. Ohtsu, “Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal,” Opt. Commun. 102, 304 (1993).
    [CrossRef]
  6. U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).
  7. F. J. Effenberger and G. J. Dixon, “2.95 μ m intracavity difference-frequency laser,” in Digest of Topical Meeting on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1992), p. 59;“Intracavity difference frequency generation,” in Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 380.
  8. C. E. Wieman and L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  9. SDL, Inc., Model SDL5410C (mentioned to help to specify experimental parameters; other sources may be suitable).
  10. Lightwave Electronics, Inc., Model 122-1064-500-F, 500 mW (mentioned to help to specify experimental parameters; other sources may be suitable).
  11. C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
    [CrossRef]
  12. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
    [CrossRef]
  13. J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
    [CrossRef]
  14. R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), pp. 81–137.
    [CrossRef]
  15. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  16. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
    [CrossRef]

1993 (3)

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
[CrossRef]

W. Wang and M. Ohtsu, “Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal,” Opt. Commun. 102, 304 (1993).
[CrossRef]

U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).

1992 (2)

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1989 (1)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
[CrossRef]

1984 (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

1976 (1)

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

1974 (1)

Bayard, D. C.

Benko, Z.

Bosenberg, W. R.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Bradley, C. C.

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), pp. 81–137.
[CrossRef]

Canarelli, P.

Curl, R. F.

Dixon, G. J.

F. J. Effenberger and G. J. Dixon, “2.95 μ m intracavity difference-frequency laser,” in Digest of Topical Meeting on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1992), p. 59;“Intracavity difference frequency generation,” in Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 380.

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Eckhoff, W. C.

C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
[CrossRef]

Effenberger, F. J.

F. J. Effenberger and G. J. Dixon, “2.95 μ m intracavity difference-frequency laser,” in Digest of Topical Meeting on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1992), p. 59;“Intracavity difference frequency generation,” in Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 380.

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Goldberg, L.

U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).

Hall, J. L.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Herbst, R. L.

R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), pp. 81–137.
[CrossRef]

Hielscher, A. H.

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Hulet, R. G.

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Lee, S. A.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Miller, C. E.

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
[CrossRef]

A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, “Optimization of a midinfrared high-resolution difference-frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962 (1992).
[CrossRef]

C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Ohtsu, M.

W. Wang and M. Ohtsu, “Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal,” Opt. Commun. 102, 304 (1993).
[CrossRef]

Pelouch, W. S.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Pine, A. S.

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Simon, U.

U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
[CrossRef]

A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, “Optimization of a midinfrared high-resolution difference-frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962 (1992).
[CrossRef]

C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
[CrossRef]

Smolka, K. P.

Tang, C. L.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

Tittel, F. K.

U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
[CrossRef]

A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, “Optimization of a midinfrared high-resolution difference-frequency laser spectrometer,” J. Opt. Soc. Am. B 9, 1962 (1992).
[CrossRef]

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous-wave infrared laser spectrometer based on difference-frequency generation in AgGaS2for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[CrossRef]

C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
[CrossRef]

Wang, W.

W. Wang and M. Ohtsu, “Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal,” Opt. Commun. 102, 304 (1993).
[CrossRef]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Appl. Phys. Lett. (3)

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4optical parametric oscillator,” Appl. Phys. Lett. 55, 1952 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quantum Electron. (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavities,” J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Opt. Commun. (1)

W. Wang and M. Ohtsu, “Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal,” Opt. Commun. 102, 304 (1993).
[CrossRef]

Opt. Lett. (2)

U. Simon, F. K. Tittel, and L. Goldberg, “Difference-frequency mixing in AgGaS2by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, (1993).

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (5)

SDL, Inc., Model SDL5410C (mentioned to help to specify experimental parameters; other sources may be suitable).

Lightwave Electronics, Inc., Model 122-1064-500-F, 500 mW (mentioned to help to specify experimental parameters; other sources may be suitable).

C. E. Miller, W. C. Eckhoff, U. Simon, F. K. Tittel, and R. F. Curl, “Difference-frequency laser spectrometer using AgGaS2: problems encountered in power scaling,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, and R. C. Eckardt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2145, 282 (1994).
[CrossRef]

F. J. Effenberger and G. J. Dixon, “2.95 μ m intracavity difference-frequency laser,” in Digest of Topical Meeting on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1992), p. 59;“Intracavity difference frequency generation,” in Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 380.

R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), pp. 81–137.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup used to mix the outputs of an ECDL near 795 nm and a diode-laser-pumped Nd:YAG laser at 1064 nm in AgGaS2 cut for 90° type-I phase matching. The Nd:YAG laser radiation inside the mixing crystal is resonantly enhanced by a three-mirror ring buildup cavity.

Fig. 2
Fig. 2

Phase-matching bandwidth of the DFG mixing process at a phase-matching angle of 90°, recorded with the diode laser wavelength tuned. The large bandwidth of >8 cm−1 (FWHM) is due to the 5-mm length of the crystal used in the nonlinear optical mixing.

Fig. 3
Fig. 3

Generated infrared DFG power as a function of the Nd:YAG laser power incident upon the enhancement cavity. For this measurement the diode laser power was fixed at 12.1 mW (measured after the input coupler of the buildup cavity). Values shown are corrected for transmission losses of the optical components external to the buildup cavity at a wavelength of 3 μm.

Fig. 4
Fig. 4

Tuning range and power output of the infrared DFG radiation. Infrared tuning was accomplished by variation of the wavelength of the diode laser for a given orientation of the mixing crystal.

Fig. 5
Fig. 5

Comparison of the experimentally determined (data points, circles; fit, top solid curve) and theoretically calculated (bottom curve) phase-matching angles. The calculated values are based on the Sellmeier equations given in Ref. 15.

Fig. 6
Fig. 6

Methane absorption spectrum near 3.2 μm (fundamental ν3-asymmetric stretching motion), obtained with a 50-cm-long absorption cell and a methane pressure of ∼10 Torr. Trace 1, 2f-absorption signal (single sweep) recorded with a lock-in amplifier. The spectrum was recorded at a phase-matching angle of 90° with the diode laser wavelength tuned over a 30-GHz portion of the phase-matching bandwidth; trace 2, a direct absorption signal obtained by the averaging of 10 sweeps.

Metrics