Abstract

The antiresonant Fabry–Perot saturable semiconductor absorber (A-FPSA) has been successfully used to passively mode lock many different solid-state lasers. The main advantage of the A-FPSA is that important operation parameters such as the saturation intensity, losses, and impulse response can be influenced by the material and the device parameters and can be adapted to the requirements of solid-state lasers. We present a detailed quantitative discussion of the operation parameters, derive simple design rules, and show that the contribution of the A-FPSA to the starting and the stabilization of mode locking is much larger than the effect of Kerr lensing in a mode-locked Nd:YAG laser.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Blow and D. Wood, “Mode-locked lasers with nonlinear external cavities,” J. Opt. Soc. Am. B 5, 629–632 (1988).
    [Crossref]
  2. P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Land-ford, and W. Sibbett, “Enhanced mode locking of color-center lasers,” Opt. Lett. 14, 39–41 (1989).
    [Crossref] [PubMed]
  3. E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse mode locking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
    [Crossref]
  4. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [Crossref] [PubMed]
  5. U. Keller, G. W. ‘t Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022–1024 (1991).
    [Crossref] [PubMed]
  6. D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.
  7. F. Salin, J. Squier, and M. Piché, “Mode locking of Ti:sapphire lasers and self-focusing: a Gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
    [Crossref] [PubMed]
  8. U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode locked (RPM) Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
    [Crossref] [PubMed]
  9. P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
    [Crossref]
  10. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [Crossref] [PubMed]
  11. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting and self-Q-switching dynamics of a passively mode-locked Nd:YLF and Nd:YAG laser,” Opt. Lett. 18, 217–219 (1993).
    [Crossref]
  12. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
    [Crossref]
  13. K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state lasers using an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 18, 640–642 (1993).
    [Crossref]
  14. M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-starting, diode-pumped femtosecond Nd:fiber laser,” Opt. Lett. 18, 1532–1534 (1993).
    [Crossref]
  15. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
    [Crossref]
  16. F. X. Kärtner, D. Kopf, and U. Keller, “Sub-100 fs homogeneously and inhomogeneously broadened Nd:glass lasers,” in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 3.
  17. G. L. Witt, R. Calawa, U. Mishra, and E. Weber, eds., Low Temperature(LT) GaAs and Related Materials, Vol. 241 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1992).
  18. T. H. Chiu, U. Keller, M. D. Williams, M. T. Asom, and J. F. Ferguson, “Low-temperature growth of InGaAs/GaAs saturable absorbers for passively mode-locked solid-state laser applications,” J. Electron. Mater. (to be published).
  19. Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
    [Crossref]
  20. L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” submitted to Opt. Commun.
  21. H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1985).
  22. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  23. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [Crossref]
  24. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994).
    [Crossref]
  25. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  26. M. Beck, I. A. Walmsley, and J. D. Kafka, “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991).
    [Crossref]
  27. G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, “Broadband fast semiconductor saturable absorber,” Opt. Lett. 17, 1791–1793 (1992).
    [Crossref] [PubMed]
  28. J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
    [Crossref]
  29. H. A. Haus, “Parameter ranges for cw passive mode locking,” IEEE J. Quantum Electron. QE-12, 169–176 (1976).
    [Crossref]
  30. M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
    [Crossref]

1994 (3)

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994).
[Crossref]

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

1993 (4)

1992 (2)

1991 (4)

1990 (1)

1989 (4)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse mode locking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
[Crossref]

P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Land-ford, and W. Sibbett, “Enhanced mode locking of color-center lasers,” Opt. Lett. 14, 39–41 (1989).
[Crossref] [PubMed]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

1988 (1)

1983 (2)

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
[Crossref]

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
[Crossref]

1976 (1)

H. A. Haus, “Parameter ranges for cw passive mode locking,” IEEE J. Quantum Electron. QE-12, 169–176 (1976).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Arai, S.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
[Crossref]

Asom, M. T.

Bar-Joseph, I.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Beck, M.

M. Beck, I. A. Walmsley, and J. D. Kafka, “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991).
[Crossref]

Blow, K. J.

Boyd, G. D.

Brovelli, L. R.

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” submitted to Opt. Commun.

Chang, T. Y.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Chase, L.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Chiu, T. H.

Crust, D. W.

Cunningham, J. E.

Delfyett, P. J.

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

Dubé, G.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Ferguson, J. F.

Feugnet, G.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Florez, L. T.

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

French, P. M. W.

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

Goldblatt, N.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Grant, R. S.

Haus, H. A.

E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse mode locking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
[Crossref]

H. A. Haus, “Parameter ranges for cw passive mode locking,” IEEE J. Quantum Electron. QE-12, 169–176 (1976).
[Crossref]

Hofer, M.

Hooft, G. W. ‘t

Ippen, E. P.

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994).
[Crossref]

E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse mode locking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
[Crossref]

Islam, M. N.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Jacobovitz-Veselka, G. R.

Kafka, J. D.

M. Beck, I. A. Walmsley, and J. D. Kafka, “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991).
[Crossref]

Kärtner, F. X.

F. X. Kärtner, D. Kopf, and U. Keller, “Sub-100 fs homogeneously and inhomogeneously broadened Nd:glass lasers,” in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 3.

Kean, P. N.

Keller, U.

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting and self-Q-switching dynamics of a passively mode-locked Nd:YLF and Nd:YAG laser,” Opt. Lett. 18, 217–219 (1993).
[Crossref]

M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-starting, diode-pumped femtosecond Nd:fiber laser,” Opt. Lett. 18, 1532–1534 (1993).
[Crossref]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
[Crossref]

K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state lasers using an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 18, 640–642 (1993).
[Crossref]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[Crossref] [PubMed]

G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, “Broadband fast semiconductor saturable absorber,” Opt. Lett. 17, 1791–1793 (1992).
[Crossref] [PubMed]

U. Keller, G. W. ‘t Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022–1024 (1991).
[Crossref] [PubMed]

U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode locked (RPM) Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
[Crossref] [PubMed]

T. H. Chiu, U. Keller, M. D. Williams, M. T. Asom, and J. F. Ferguson, “Low-temperature growth of InGaAs/GaAs saturable absorbers for passively mode-locked solid-state laser applications,” J. Electron. Mater. (to be published).

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” submitted to Opt. Commun.

F. X. Kärtner, D. Kopf, and U. Keller, “Sub-100 fs homogeneously and inhomogeneously broadened Nd:glass lasers,” in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 3.

Kishino, K.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
[Crossref]

Knox, W. H.

Kopf, D.

F. X. Kärtner, D. Kopf, and U. Keller, “Sub-100 fs homogeneously and inhomogeneously broadened Nd:glass lasers,” in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 3.

Land-ford, N.

Liu, L. Y.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1985).

Manning, J.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
[Crossref]

Mellish, P. M.

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

Miller, B. I.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Miller, D. A. B.

Negus, D. K.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Ober, M. H.

Olshansky, R.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
[Crossref]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Piché, M.

Roskos, H.

Salin, F.

Sauer, N.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Soccolich, C. E.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Spence, D. E.

Spinelli, L.

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Squier, J.

Su, C. B.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
[Crossref]

Suematsu, Y.

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
[Crossref]

Sunderman, E. R.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

Taylor, J. R.

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

Walmsley, I. A.

M. Beck, I. A. Walmsley, and J. D. Kafka, “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991).
[Crossref]

Weingarten, K. J.

Williams, M. D.

T. H. Chiu, U. Keller, M. D. Williams, M. T. Asom, and J. F. Ferguson, “Low-temperature growth of InGaAs/GaAs saturable absorbers for passively mode-locked solid-state laser applications,” J. Electron. Mater. (to be published).

Wood, D.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Zhu, X.

Appl. Phys. B (2)

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[Crossref]

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994).
[Crossref]

Electron. Lett. (1)

P. M. Mellish, P. M. W. French, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “All-solid-state femtosecond diode-pumped Cr:LiSAF laser,” Electron. Lett. 30, 223–224 (1994).
[Crossref]

IEEE J. Lightwave Technol. (1)

Y. Suematsu, S. Arai, and K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” IEEE J. Lightwave Technol. LT-1, 161–176 (1983).
[Crossref]

IEEE J. Quantum Electron. (5)

M. Beck, I. A. Walmsley, and J. D. Kafka, “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991).
[Crossref]

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs in 1.3 μ m InGaAsP diode lasers,” IEEE J. Quantum Electron. QE-19, 1525–1530 (1983).
[Crossref]

H. A. Haus, “Parameter ranges for cw passive mode locking,” IEEE J. Quantum Electron. QE-12, 169–176 (1976).
[Crossref]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (11)

P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Land-ford, and W. Sibbett, “Enhanced mode locking of color-center lasers,” Opt. Lett. 14, 39–41 (1989).
[Crossref] [PubMed]

F. Salin, J. Squier, and M. Piché, “Mode locking of Ti:sapphire lasers and self-focusing: a Gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
[Crossref] [PubMed]

U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode locked (RPM) Ti:sapphire laser,” Opt. Lett. 15, 1377–1379 (1990).
[Crossref] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
[Crossref] [PubMed]

U. Keller, G. W. ‘t Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022–1024 (1991).
[Crossref] [PubMed]

K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state lasers using an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 18, 640–642 (1993).
[Crossref]

M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-starting, diode-pumped femtosecond Nd:fiber laser,” Opt. Lett. 18, 1532–1534 (1993).
[Crossref]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
[Crossref]

G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, “Broadband fast semiconductor saturable absorber,” Opt. Lett. 17, 1791–1793 (1992).
[Crossref] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[Crossref] [PubMed]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting and self-Q-switching dynamics of a passively mode-locked Nd:YLF and Nd:YAG laser,” Opt. Lett. 18, 217–219 (1993).
[Crossref]

Other (8)

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

F. X. Kärtner, D. Kopf, and U. Keller, “Sub-100 fs homogeneously and inhomogeneously broadened Nd:glass lasers,” in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 3.

G. L. Witt, R. Calawa, U. Mishra, and E. Weber, eds., Low Temperature(LT) GaAs and Related Materials, Vol. 241 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1992).

T. H. Chiu, U. Keller, M. D. Williams, M. T. Asom, and J. F. Ferguson, “Low-temperature growth of InGaAs/GaAs saturable absorbers for passively mode-locked solid-state laser applications,” J. Electron. Mater. (to be published).

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” submitted to Opt. Commun.

H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1985).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

D. K. Negus, L. Spinelli, N. Goldblatt, and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens modelocking in Ti:sapphire,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 120–124.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Structure of an A-FPSA designed for an operation wavelength of ≈1 μm.

Fig. 2
Fig. 2

(a) Calculated insertion losses, (b) ξ factor versus the reflectivity of the top mirror for various thicknesses d (0.31, 0.61, and 1.22 μm). Lines d = 0.61 μm, the actual sample used in the mode-locking experiments.

Fig. 3
Fig. 3

Calculated mode-locking driving force versus reflectivity of the top mirror for various thicknesses d (0.31, 0.61, and 1.32 μm). Curve d = 0.61 is the actual sample, with a 22-ps carrier lifetime and a saturation fluence of 48 μJ/cm2, used in the mode-locking experiments.

Fig. 4
Fig. 4

Calculated reflectivity and group delay of an A-FPSA as shown in Fig. 1, with a top mirror consisting of four layer pairs (Rt = 98%).

Fig. 5
Fig. 5

Low-intensity reflectivity of (a) AR-coated samples and (b) A-FPSA’s grown at various temperatures.

Fig. 6
Fig. 6

(a) Typical bitemporal pulse response of the sample grown at 260 °C for various pulse energies (0.13, 0.5, and 0.7 nJ; λ = 1060 nm); (b) measured carrier lifetimes versus growth temperature. MBE, molecular-beam epitaxy.

Fig. 7
Fig. 7

(a) Measured change in reflectivity versus pulse energy density (symbols) and theoretical fit (solid curves); (b) saturation fluence and nonsaturable losses for samples grown at various temperatures.

Fig. 8
Fig. 8

Calculated reflectivity change versus pulse energy density of different A-FPSA’s with 95% and 98% reflectivity top mirrors at λ = 1047 nm.

Fig. 9
Fig. 9

Passively mode-locked gain-at-the-end Nd:YLF or Nd:YAG cavity with one of the end mirrors replaced by an A-FPSA.

Fig. 10
Fig. 10

Comparison of gain or loss change of KLM and A-FPSA’s versus the average intracavity power in a mode-locked Nd:YAG laser (a) in the middle of the stability regime and (b) close to the stability limit.

Fig. 11
Fig. 11

Measured relaxation oscillation peak of the microwave spectrum of a mode-locked Nd:YLF laser with various A-FPSA’s.

Fig. 12
Fig. 12

Measured mode-locking buildup time of a mode-locked Nd:YLF laser with various A-FPSA’s.

Fig. 13
Fig. 13

Measured fast time constant (thermalization time) versus incident pulse energy for three different samples at 1060 nm.

Tables (1)

Tables Icon

Table 1 Mode-Locking Driving Forces and Insertion Losses of Various A-FPSA’s with 95%- and 98%-Reflectivity Top Mirrors Used in the Mode-Locking Experiments

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Φ r t = 2 n k d + ϕ b + ϕ t ,
Φ r t , a = 2 n k d a + ϕ b + ϕ t = ( 2 m 1 ) π , m = 1 , 2 , 3 .
ϕ t = 2 ( k k B ) n eff t L e ff t , ϕ b = π + 2 ( k k B ) n eff b L e ff b ,
Δ λ = λ 2 / 2 L opt ,
L opt = n d + n eff t L eff t + n eff b L eff b .
n eff L eff = n eff λ B 4 Δ n ,
n eff = d 1 n 1 + d 2 n 2 d 1 + d 2 = λ B 2 ( d 1 + d 2 ) ,
n eff L eff = n λ B 4 Δ n
n eff L eff = λ B Δ n 2 π 2 n + n eff 2 λ B 4 n Δ n
Δ λ = 4 λ B π sin 1 ( n 2 n 1 n 2 + n 1 ) .
R = [ R t + R b exp ( 2 α d ) ] 2 4 R t R b exp ( 2 α d ) cos 2 ( Φ r t / 2 ) [ 1 + R t R b exp ( 2 α d ) ] 2 4 R t R b exp ( 2 α d ) cos 2 ( Φ r t / 2 ) ,
I H R ( z ) = ξ I A R ( z ) ,
ξ = 1 R t [ 1 + R t R b exp ( 2 α d ) ] 2 4 R t R b exp ( 2 α d ) cos 2 ( Φ r t / 2 ) .
E sat eff = 1 ξ E sat 0 .
I sat = h ν σ τ c , E sat = h ν σ , I sat = E sat τ c ,
E E sat = T R I τ c I sat 1000 I I sat ,
R f = R 0 R 0 ( R 0 1 ) exp ( E in / E sat ) ,
R ( E in ) = E out E in = R ns log ( R 0 1 R f 1 ) log ( R 0 1 R f 1 ) log ( R 0 R f ) ,
R A FPSA ( E in ) = [ R t + R ( ξ E in ) ] 2 [ 1 + R t R ( ξ E in ) ] 2 .
d I d z = 2 α 0 1 + I / I sat I .
log R + I in I sat ( R 1 ) = 4 α 0 d ,
log R + I in I sat [ exp ( 4 α 0 d ) 1 ] = 4 α 0 d
R ( I in ) = R ns { I in I sat [ exp ( 4 α 0 d ) 1 ] 4 α 0 d } ,
( d R d I ) I 0 = τ c ( R t 1 ) 2 E sat [ exp ( 4 α 0 d ) 1 ] { R t + R b exp [ 2 ( α 0 + α ns ) d ] } R b exp [ 2 ( α 0 + α ns ) d ] [ exp ( 2 α 0 d ) + R t R b ] 2 { 1 + R t R b exp [ 2 ( α 0 + α ns ) d ] } 3 .
( d R d I ) I 0 = τ c ( R t 1 ) 2 E sat × [ 1 exp ( 2 α 0 d ) ] exp ( 2 α ns d ) [ 1 + exp ( 2 α 0 d ) ] { 1 + exp [ 2 ( α 0 + α ns ) d ] } 2 .
| d R d I | I > g 0 g sat T R τ 2 ,
T growth = T R ( d R d I I ) 1 ,

Metrics