Abstract

A high-precision reflectometer has been designed and implemented to measure directly the specular reflectance (R) of materials in the submillimeter (SM) region of the spectrum (300 GHz < ν < 3000 GHz). Previous laser-based measurement systems were limited to an uncertainty in R of ± 1.0% because of a number of issues such as lack of an absolute reflection standard, difficulties in the interchange of sample and standard in the laser beam, and instabilities in the laser system. We realized a SM reflection standard by ellipsometrically characterizing the complex index of refraction of high-purity, single-crystal silicon to a precision such that its SM reflectivity could be calculated to better than ±0.03%. To deal with alignment issues, a precision sample holder was designed and built to accommodate both sample and silicon reflection standard on an air-bearing rotary stage. The entire measurement system operated under computer control and included ratioing of the reflected signal to a reference laser signal, measured simultaneously, to help to eliminate short-term laser instabilities. Many such measurements taken rapidly in succession helped to eliminate the effects of both source and detector drift. A liquid-helium-cooled bolometer was modified with a large area detecting element to help to compensate for the slight residual misalignment between sample and reflection standard as they were positioned into and out of the laser beam. These modifications enabled the final measurement precision for R to be reduced to less than 0.1%. The major contribution to this uncertainty was the difficulty in precisely exchanging the positions of sample and standard into and out of the laser beam and was not due to laser or detector noise or instabilities. In other words, further averaging would not help to reduce this uncertainty. This order-of-magnitude improvement makes possible, for the first time to our knowledge, high-precision reflectance measurements of common metals such as copper, gold, aluminum, and chromium whose predicted reflectivities exceed 99% in the SM region. Furthermore, precise measurement of the high-frequency losses in high-temperature superconducting materials is now also possible. Measurements reported here of metals at a laser wavelength of λ = 513.01 μm (ν ≈ 584 GHz) indicate a slight discrepancy between experimental and theoretically predicted values, with measured results falling 0.1–0.3% below predicted values.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Tischer, “Excess surface resistance due to surface roughness at 35 GHz,” IEEE Trans. Microwave Theory Tech. 22, 566–569 (1974).
    [Crossref]
  2. B. Donovan, Elementary Theory of Metals (Pergamon, London, 1967), Chap. 9.
  3. J. R. Birch, “The absolute determination of complex reflectivity,” Infrared Phys. 18, 613–620 (1978).
    [Crossref]
  4. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  5. A. J. Gatesman, “A high precision reflectometer for the study of optical properties of materials in the submillimeter,” Ph.D. dissertation (University of Massachusetts Lowell, Lowell, Mass., 1993).
  6. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier/North Holland, Amsterdam, 1977), Chap. 4.
  7. R. H. Giles and M. J. Coulombe, “Design of a submillimeter ellipsometer for the measurement of the complex indices of refraction of materials,” in Proceedings of the 10th International Conference on Infrared and Millimeter Waves (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 319–320.
  8. J. C. Cotteverte, F. Bretenaker, and A. Le Floch, “Jones matrices of a tilted plate for Gaussian beams,” Appl. Opt. 30, 305–311 (1991).
    [Crossref] [PubMed]
  9. J. L. Pelletier, “Frequency locking system for a CO2laser,” M.S. thesis (University of Massachusetts Lowell, Lowell, Mass., 1990).
  10. R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
    [Crossref]
  11. F. A. Benson, Millimeter and Submillimeter Waves (Iliffe, London, 1969), Chap. 14.
  12. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).
  13. F. J. Tischer, “Excess conduction losses at millimeter wavelength,” IEEE Trans. Microwave Theory Tech. MTT-24, 853–858 (1976).
    [Crossref]
  14. T. S. Thorpe, “Rf conductivity in copper at 8 mm wavelengths,” Proc. Inst. Elec. Eng. Part 3 101, 357–359 (1954).
  15. L. W. Hinderks and A. Maione, “Copper conductivity at millimeter-wave frequencies,” Bell Syst. Tech. J. 59, 43–65 (1980).
    [Crossref]
  16. K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
    [Crossref]
  17. P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.
  18. N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
    [Crossref]
  19. D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
    [Crossref]
  20. J. S. Martens and J. B. Beyer, “Microwave surface resistance of YBa2Cu3O6.9superconducting films,” Appl. Phys. Lett. 52, 1822–1824 (1988).
    [Crossref]
  21. W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
    [Crossref]

1992 (2)

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

1991 (2)

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

J. C. Cotteverte, F. Bretenaker, and A. Le Floch, “Jones matrices of a tilted plate for Gaussian beams,” Appl. Opt. 30, 305–311 (1991).
[Crossref] [PubMed]

1990 (1)

1989 (1)

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

1988 (1)

J. S. Martens and J. B. Beyer, “Microwave surface resistance of YBa2Cu3O6.9superconducting films,” Appl. Phys. Lett. 52, 1822–1824 (1988).
[Crossref]

1980 (1)

L. W. Hinderks and A. Maione, “Copper conductivity at millimeter-wave frequencies,” Bell Syst. Tech. J. 59, 43–65 (1980).
[Crossref]

1978 (1)

J. R. Birch, “The absolute determination of complex reflectivity,” Infrared Phys. 18, 613–620 (1978).
[Crossref]

1977 (1)

R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
[Crossref]

1976 (1)

F. J. Tischer, “Excess conduction losses at millimeter wavelength,” IEEE Trans. Microwave Theory Tech. MTT-24, 853–858 (1976).
[Crossref]

1974 (1)

F. J. Tischer, “Excess surface resistance due to surface roughness at 35 GHz,” IEEE Trans. Microwave Theory Tech. 22, 566–569 (1974).
[Crossref]

1954 (1)

T. S. Thorpe, “Rf conductivity in copper at 8 mm wavelengths,” Proc. Inst. Elec. Eng. Part 3 101, 357–359 (1954).

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier/North Holland, Amsterdam, 1977), Chap. 4.

Baird, J. M.

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

Barnett, L. R.

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier/North Holland, Amsterdam, 1977), Chap. 4.

Batt, R. J.

R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
[Crossref]

Benson, F. A.

F. A. Benson, Millimeter and Submillimeter Waves (Iliffe, London, 1969), Chap. 14.

Beyer, J. B.

J. S. Martens and J. B. Beyer, “Microwave surface resistance of YBa2Cu3O6.9superconducting films,” Appl. Phys. Lett. 52, 1822–1824 (1988).
[Crossref]

Birch, J. R.

J. R. Birch, “The absolute determination of complex reflectivity,” Infrared Phys. 18, 613–620 (1978).
[Crossref]

Bretenaker, F.

Cohn, D. R.

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

Cole, B. F.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Cotteverte, J. C.

Coulombe, M. J.

R. H. Giles and M. J. Coulombe, “Design of a submillimeter ellipsometer for the measurement of the complex indices of refraction of materials,” in Proceedings of the 10th International Conference on Infrared and Millimeter Waves (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 319–320.

Donovan, B.

B. Donovan, Elementary Theory of Metals (Pergamon, London, 1967), Chap. 9.

Dutta, B.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Eom, C. B.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Etemad, S.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Fattinger, Ch.

Flippen, R. B.

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

Gatesman, A. J.

A. J. Gatesman, “A high precision reflectometer for the study of optical properties of materials in the submillimeter,” Ph.D. dissertation (University of Massachusetts Lowell, Lowell, Mass., 1993).

Geballe, T. H.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Giles, R. H.

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

R. H. Giles and M. J. Coulombe, “Design of a submillimeter ellipsometer for the measurement of the complex indices of refraction of materials,” in Proceedings of the 10th International Conference on Infrared and Millimeter Waves (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 319–320.

Grischkowsky, D.

Grow, R. W.

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

Han, S. C.

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

Harris, D. J.

R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
[Crossref]

Hinderks, L. W.

L. W. Hinderks and A. Maione, “Copper conductivity at millimeter-wave frequencies,” Bell Syst. Tech. J. 59, 43–65 (1980).
[Crossref]

Holstein, W. L.

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

Inam, A.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Jones, G. D.

R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
[Crossref]

Keiding, S.

Klein, N.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Klein, U.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Le Floch, A.

Maione, A.

L. W. Hinderks and A. Maione, “Copper conductivity at millimeter-wave frequencies,” Bell Syst. Tech. J. 59, 43–65 (1980).
[Crossref]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

Martens, J. S.

J. S. Martens and J. B. Beyer, “Microwave surface resistance of YBa2Cu3O6.9superconducting films,” Appl. Phys. Lett. 52, 1822–1824 (1988).
[Crossref]

Miller, D.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Muller, G.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Newman, N.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Parisi, L. A.

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

Peiniger, M.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Pelletier, J. L.

J. L. Pelletier, “Frequency locking system for a CO2laser,” M.S. thesis (University of Massachusetts Lowell, Lowell, Mass., 1990).

Piel, H.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Richards, P. L.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Roas, B.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Schiever, K. S.

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

Shultz, L.

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

Thorpe, T. S.

T. S. Thorpe, “Rf conductivity in copper at 8 mm wavelengths,” Proc. Inst. Elec. Eng. Part 3 101, 357–359 (1954).

Tischer, F. J.

F. J. Tischer, “Excess conduction losses at millimeter wavelength,” IEEE Trans. Microwave Theory Tech. MTT-24, 853–858 (1976).
[Crossref]

F. J. Tischer, “Excess surface resistance due to surface roughness at 35 GHz,” IEEE Trans. Microwave Theory Tech. 22, 566–569 (1974).
[Crossref]

van Exter, M.

Venkatesan, T.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Waldman, J.

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

Wilker, C.

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

Woskov, P. P.

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

Wu, X. D.

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

N. Klein, G. Muller, H. Piel, B. Roas, L. Shultz, U. Klein, and M. Peiniger, “Millimeter wave surface resistance of epitaxially grown YBa2Cu3O7–x thin films,” Appl. Phys. Lett. 54, 757–759 (1989).
[Crossref]

D. Miller, P. L. Richards, S. Etemad, A. Inam, T. Venkatesan, B. Dutta, X. D. Wu, C. B. Eom, T. H. Geballe, N. Newman, and B. F. Cole, “Residual losses in epitaxial thin films of YBa2Cu3O7 from microwave to submillimeter wave frequencies,” Appl. Phys. Lett. 59, 2326–2328 (1991).
[Crossref]

J. S. Martens and J. B. Beyer, “Microwave surface resistance of YBa2Cu3O6.9superconducting films,” Appl. Phys. Lett. 52, 1822–1824 (1988).
[Crossref]

W. L. Holstein, L. A. Parisi, C. Wilker, and R. B. Flippen, “Tl2Ba2CaCu2O8films with very low microwave surface resistance up to 95 K,” Appl. Phys. Lett. 60, 2014–2016 (1992).
[Crossref]

Bell Syst. Tech. J. (1)

L. W. Hinderks and A. Maione, “Copper conductivity at millimeter-wave frequencies,” Bell Syst. Tech. J. 59, 43–65 (1980).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

R. J. Batt, G. D. Jones, and D. J. Harris, “The measurement of the surface resistivity of gold at 890 GHz,” IEEE Trans. Microwave Theory Tech. MTT-25, 488–491 (1977).
[Crossref]

F. J. Tischer, “Excess conduction losses at millimeter wavelength,” IEEE Trans. Microwave Theory Tech. MTT-24, 853–858 (1976).
[Crossref]

F. J. Tischer, “Excess surface resistance due to surface roughness at 35 GHz,” IEEE Trans. Microwave Theory Tech. 22, 566–569 (1974).
[Crossref]

Infrared Phys. (1)

J. R. Birch, “The absolute determination of complex reflectivity,” Infrared Phys. 18, 613–620 (1978).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

K. S. Schiever, J. M. Baird, L. R. Barnett, and R. W. Grow, “Investigation of techniques for minimizing resistivity of thin metallic films at submillimeter wavelengths,” Int. J. Infrared Millimeter Waves 13, 1139–1143 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Proc. Inst. Elec. Eng. Part 3 (1)

T. S. Thorpe, “Rf conductivity in copper at 8 mm wavelengths,” Proc. Inst. Elec. Eng. Part 3 101, 357–359 (1954).

Other (8)

F. A. Benson, Millimeter and Submillimeter Waves (Iliffe, London, 1969), Chap. 14.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

A. J. Gatesman, “A high precision reflectometer for the study of optical properties of materials in the submillimeter,” Ph.D. dissertation (University of Massachusetts Lowell, Lowell, Mass., 1993).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier/North Holland, Amsterdam, 1977), Chap. 4.

R. H. Giles and M. J. Coulombe, “Design of a submillimeter ellipsometer for the measurement of the complex indices of refraction of materials,” in Proceedings of the 10th International Conference on Infrared and Millimeter Waves (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 319–320.

B. Donovan, Elementary Theory of Metals (Pergamon, London, 1967), Chap. 9.

J. L. Pelletier, “Frequency locking system for a CO2laser,” M.S. thesis (University of Massachusetts Lowell, Lowell, Mass., 1990).

P. P. Woskov, D. R. Cohn, S. C. Han, R. H. Giles, and J. Waldman, “Precision submillimeter-wave reflectometry of metals and superconductors,” presented at the 15th International Conference on Infrared and Millimeter Waves, Lake Buena Vista, Fla., December 10–14, 1990.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

HR reflectivity of metals listed in Table 1. The high-frequency correction described in Section 4 is shown for gold.

Fig. 2
Fig. 2

General optical configuration of the high-precision reflectometer showing signal and reference detectors (liquid-helium bolometers) and the six-position sample holder mounted on an air-bearing rotary stage.

Tables (4)

Tables Icon

Table 1 Resistivities and Conductivities of Various Metals

Tables Icon

Table 2 Ellipsometrically Determined SM Complex Index of Refraction of Silicon (ρdc = 40–60 kΩ cm)

Tables Icon

Table 3 Results of Reflectivity Measurements at λ = 513.01 μm

Tables Icon

Table 4 Reflectivity of Commercially Available Front Surface Mirrors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = 1 R .
R s = ( Z / 4 ) ( 1 R ) ,
R HR = 1 2 ω π σ dc .
R = 1 2 ω π σ dc [ ( 1 + ω 2 τ 2 ) 1 / 2 + ω τ ] 1 / 2 .

Metrics