Abstract

Experiments on a XeF (BX) laser excited by a prepulse–main-pulse technique, including magnetic switching, are described. A parametric study of the laser output versus gas composition and electrical excitation was performed. We were able to increase the optical pulse length to typically 70 ns. The total output energy was typically 180 mJ (2.4 J/L) at an efficiency of more than 1.2%. The results demonstrate the possibility of a high average power gas-discharge XeF laser.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
    [CrossRef]
  2. H. Kumagai and M. Obara, "Output energy enhancement of discharge pumped XeF(B–X) lasers with the two-component halogen donor mixtures," IEEE J. Quantum Electron. 25, 1874–1878 (1989).
    [CrossRef]
  3. P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
    [CrossRef]
  4. M. Trentelman, "Gas discharge excited XeF laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1993).
  5. W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
    [CrossRef]
  6. R. S. Taylor and K. E. Leopold, "Magnetically induced pulser laser excitation," Appl. Phys. Lett. 46, 335–337 (1985).
    [CrossRef]
  7. Th. J. Pacala, "Magnetically switched power supply system for lasers," U.S. Patent 4,698,518 (October 6, 1987).
  8. C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
    [CrossRef]
  9. J. W. Gerritsen, "High-efficiency operation of an x-ray preionized avalanche discharge XeCl laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).
  10. J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
    [CrossRef]
  11. R. S. Taylor and K. E. Leopold, "Magnetic-spiker excitation of gas discharge lasers," Appl. Phys. B 59, 479–508 (1994).
    [CrossRef]
  12. B. Lacour and C. Vannier, "Phototriggering of a 1-J excimer laser using either UV of x-rays," J. Appl. Phys. 62, 754–758 (1987).
    [CrossRef]
  13. S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
    [CrossRef]
  14. M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
    [CrossRef]
  15. I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
    [CrossRef]
  16. F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
    [CrossRef]

1994 (3)

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

R. S. Taylor and K. E. Leopold, "Magnetic-spiker excitation of gas discharge lasers," Appl. Phys. B 59, 479–508 (1994).
[CrossRef]

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

1991 (1)

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

1990 (2)

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

1989 (1)

H. Kumagai and M. Obara, "Output energy enhancement of discharge pumped XeF(B–X) lasers with the two-component halogen donor mixtures," IEEE J. Quantum Electron. 25, 1874–1878 (1989).
[CrossRef]

1987 (1)

B. Lacour and C. Vannier, "Phototriggering of a 1-J excimer laser using either UV of x-rays," J. Appl. Phys. 62, 754–758 (1987).
[CrossRef]

1986 (1)

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

1985 (1)

R. S. Taylor and K. E. Leopold, "Magnetically induced pulser laser excitation," Appl. Phys. Lett. 46, 335–337 (1985).
[CrossRef]

1983 (1)

W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
[CrossRef]

1982 (1)

I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
[CrossRef]

1977 (1)

W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
[CrossRef]

Alcock, A. J.

W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
[CrossRef]

Bollanti, S.

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Burkes, T. R.

I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
[CrossRef]

Byron, S. R.

I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
[CrossRef]

DeHart, T. E.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Delaporte, P.

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

Ernst, G. J.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Ewing, J. J.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Fischer, C. H.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Fontaine, B. L.

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

Forestier, B. M.

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

Gerritsen, J. W.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

J. W. Gerritsen, "High-efficiency operation of an x-ray preionized avalanche discharge XeCl laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).

Giordano, G.

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Goor, F. A. van

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

Hermsen, T.

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Keet, A. L.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Kumagai, H.

H. Kumagai and M. Obara, "Output energy enhancement of discharge pumped XeF(B–X) lasers with the two-component halogen donor mixtures," IEEE J. Quantum Electron. 25, 1874–1878 (1989).
[CrossRef]

Kushner, M. J.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Lacour, B.

B. Lacour and C. Vannier, "Phototriggering of a 1-J excimer laser using either UV of x-rays," J. Appl. Phys. 62, 754–758 (1987).
[CrossRef]

Lazzaro, P. Di

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Leopold, K. E.

R. S. Taylor and K. E. Leopold, "Magnetic-spiker excitation of gas discharge lasers," Appl. Phys. B 59, 479–508 (1994).
[CrossRef]

R. S. Taylor and K. E. Leopold, "Magnetically induced pulser laser excitation," Appl. Phys. Lett. 46, 335–337 (1985).
[CrossRef]

W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
[CrossRef]

Letardi, T.

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Long, W. H.

W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
[CrossRef]

MacDaniel, J. P.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Mei, Q.-C.

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

Obara, M.

H. Kumagai and M. Obara, "Output energy enhancement of discharge pumped XeF(B–X) lasers with the two-component halogen donor mixtures," IEEE J. Quantum Electron. 25, 1874–1878 (1989).
[CrossRef]

Pacala, Th. J.

Th. J. Pacala, "Magnetically switched power supply system for lasers," U.S. Patent 4,698,518 (October 6, 1987).

Peters, P. J. M.

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

Petr, R. A.

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

Plummer, M. J.

W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
[CrossRef]

Sarjeant, W. J.

W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
[CrossRef]

Sentis, M. L.

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

Smilansky, I.

I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
[CrossRef]

Stappaerts, E. A.

W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
[CrossRef]

Taylor, R. S.

R. S. Taylor and K. E. Leopold, "Magnetic-spiker excitation of gas discharge lasers," Appl. Phys. B 59, 479–508 (1994).
[CrossRef]

R. S. Taylor and K. E. Leopold, "Magnetically induced pulser laser excitation," Appl. Phys. Lett. 46, 335–337 (1985).
[CrossRef]

Timmermans, J. C. M.

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

Trentelman, M.

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

M. Trentelman, "Gas discharge excited XeF laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1993).

Vannier, C.

B. Lacour and C. Vannier, "Phototriggering of a 1-J excimer laser using either UV of x-rays," J. Appl. Phys. 62, 754–758 (1987).
[CrossRef]

Witteman, W. J.

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Zheng, C. E.

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Appl. Phys. B (3)

P. J. M. Peters, M. Trentelman, Q.-C. Mei, and W. J. Witteman, "Gas discharge XeF(B–X) laser with high specific output energy," Appl. Phys. B 59, 533–535 (1994).
[CrossRef]

R. S. Taylor and K. E. Leopold, "Magnetic-spiker excitation of gas discharge lasers," Appl. Phys. B 59, 479–508 (1994).
[CrossRef]

S. Bollanti, P. Di Lazzaro, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, "Performance of a ten-liter electron avalanche-discharge XeCl laser device," Appl. Phys. B 50, 415–423 (1990).
[CrossRef]

Appl. Phys. Lett. (5)

I. Smilansky, S. R. Byron, and T. R. Burkes, "Electrical excitation of an XeCl laser using magnetic pulse compression," Appl. Phys. Lett. 40, 547–548 (1982).
[CrossRef]

W. J. Sarjeant, A. J. Alcock, and K. E. Leopold, "A scalable multi-atmosphere high-power XeF laser," Appl. Phys. Lett. 30, 635–637 (1977).
[CrossRef]

W. H. Long, M. J. Plummer, and E. A. Stappaerts, "Efficient discharge pumping of an XeCl laser using a high-voltage prepulse," Appl. Phys. Lett. 43, 735–737 (1983).
[CrossRef]

R. S. Taylor and K. E. Leopold, "Magnetically induced pulser laser excitation," Appl. Phys. Lett. 46, 335–337 (1985).
[CrossRef]

C. H. Fischer, M. J. Kushner, T. E. DeHart, J. P. MacDaniel, R. A. Petr, and J. J. Ewing, "High efficiency XeCl laser with spiker and magnetic isolation," Appl. Phys. Lett. 48, 1574–1576 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Kumagai and M. Obara, "Output energy enhancement of discharge pumped XeF(B–X) lasers with the two-component halogen donor mixtures," IEEE J. Quantum Electron. 25, 1874–1878 (1989).
[CrossRef]

M. L. Sentis, P. Delaporte, B. M. Forestier, and B. L. Fontaine, "Design and characteristics of high pulse repetition rate and high average power excimer laser systems," IEEE J. Quantum Electron. 27, 2332–2339 (1991).
[CrossRef]

J. Appl. Phys. (3)

B. Lacour and C. Vannier, "Phototriggering of a 1-J excimer laser using either UV of x-rays," J. Appl. Phys. 62, 754–758 (1987).
[CrossRef]

F. A. van Goor, M. Trentelman, J. C. M. Timmermans, and W. J. Witteman, "Improved x-ray switched XeCl laser," J. Appl. Phys. 75, 621–623 (1994).
[CrossRef]

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, "High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit," J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Other (3)

M. Trentelman, "Gas discharge excited XeF laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1993).

J. W. Gerritsen, "High-efficiency operation of an x-ray preionized avalanche discharge XeCl laser," Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).

Th. J. Pacala, "Magnetically switched power supply system for lasers," U.S. Patent 4,698,518 (October 6, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Sketch of the prepulse–main-pulse electrical circuit with magnetic switching for excitation of gas-discharge excimer lasers. This circuit can be operated in both the switch mode and the resonant overshoot mode. HV, high voltage; Thy’s, thyratrons; Trafo, 1:1.

Fig. 2
Fig. 2

Sketch of the ROM, highlighting several parameters.

Fig. 3
Fig. 3

Typical example of a measurement for the ROM.

Fig. 4
Fig. 4

Output energy and width (FWHM) of the optical pulse as a function of the delay time between the preionization pulse and the prepulse.

Fig. 5
Fig. 5

Output energy and peak discharge current as functions of the partial pressures of NF3 and Xe. The NF3:Xe ratio is 1:5, the total pressure is 4 bars (Ne), and the PFN capacitance is 108 nF.

Fig. 6
Fig. 6

Optical output energy as a function of the total pressure for CPFN = 270 nF and CPFN = 108 nF. The mixture contains 1-mbar NF3 and 5-mbar Xe.

Fig. 7
Fig. 7

Width of the optical pulse (FWHM) and ring-up time as functions of the total pressure for CPFN = 108 nF. The mixture contains 1-mbar NF3 and 5-mbar Xe.

Fig. 8
Fig. 8

Output energy and peak discharge current as functions of PFN charging voltage for CPFN = 270 nF and for CPFN = 108 nF. The mixture contains 1-mbar NF3 and 5-mbar Xe, and the total pressure is 4 bars.

Fig. 9
Fig. 9

Efficiency as a function of the PFN charging voltage for four values of the PFN capacitance. The gas mixture consists of 1-mbar NF3, 5-mbar Xe, and 4-bars Ne.

Fig. 10
Fig. 10

Width of the optical pulse, ring-up time, and termination time as functions of the PFN charging voltage. The mixture contains 1-mbar NF3 and 5-mbar Xe, the total pressure is 4-bars Ne, and CPFN − 108 nF.

Fig. 11
Fig. 11

Optical output energy as a function of the PFN charging voltage for output coupling mirrors with 50%, 70%, and 90% reflectivity. The PFN capacitance is 162 nF, and the gas composition is 1-mbar NF3, 5-mbar Xe, and 4-bars Ne.

Fig. 12
Fig. 12

Output energy and peak discharge current as functions of the prepulse voltage for CPFN = 270 nF. The mixture contains 1-mbar NF3 and 5-mbar Xe, and the total pressure is 4 bars.

Fig. 13
Fig. 13

Sketch of the prepulse electrical circuit with MPC.

Fig. 14
Fig. 14

Optical output energy as a function of the PFN charging voltage with and without MPC. The gas mixture consists of 1-mbar NF3, 5-mbar Xe, and 4-bars Ne.

Fig. 15
Fig. 15

Optical output energy and peak discharge current for the ROM and the phototriggered mode (PTM) compared. The PFN capacitance is 162 nFm and the gas composition is 1-mbar NF3, 5-mbar Xe, and 4-bar Ne.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t t + Δ t V d t = N A Δ B ,

Metrics