Abstract

We study semianalytically soliton dynamics in a soliton-based communication line for which the amplifier spacing is larger than the soliton period (referred to as the quasi-adiabatic regime). This regime allows us to overcome the limit on the soliton duration (TFWHM ˜ 15 ps) imposed by the average-soliton regime. Our calculations show that periodically stable propagation of short solitons (TFWHM = 1−5 ps) is possible for an amplifier spacing ranging from 5 to 20 km. We discuss the dynamical features associated with the propagation of short solitons in the quasi-adiabatic regime and present a simple model capable of predicting the width and the mean frequency of the steady-state soliton. We compare the model with appropriate numerical simulations. Our analysis may also be applied to fiber lasers that produce ultrashort solitons (TFWHM < 1 ps) in a relatively long-cavity configuration.

© 1995 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription