Abstract

The resonance wavelength of a silver–gold compound metal island (CMI) film can be easily defined by the control of the mixture ratio of silver and gold. We have investigated its mechanism by observing the film microstructure with a scanning electron microscope. The shift of the resonance wavelength induced by the adjustment of the mixture ratio is attributed to two important factors: (1) the changes of the island shape and (2) the changes of the dielectric constant of the silver–gold alloy. For silver-rich CMI films, the island shape slightly changes according to the mixture ratio and becomes near spherical or prolate ellipsoidal. On the other hand, for gold-rich CMI films, the island shape becomes more oblate as the gold becomes richer. Therefore the resonance wavelength shifts are considered to be caused mainly by the changes of the dielectric constant and the island shape for the the silver-rich and the gold-rich CMI films, respectively. The resonance wavelengths calculated theoretically from the scanning electron microscope observations are similar to the measured ones.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
    [CrossRef]
  2. K. Baba and M. Miyagi, "Anisotropic optical media from laminated island films: theory," J. Opt. Soc. Am. A 8, 619–624 (1991).
    [CrossRef]
  3. D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).
  4. M. J. Bloemer and J. W. Haus, "Versatile waveguide polarizer incorporating an ultrathin silver film," Appl. Phys. Lett. 61, 1619–1621 (1992).
    [CrossRef]
  5. K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
    [CrossRef]
  6. A. Leitner, "Second-harmonic generation in metal island films consisting of oriented silver particles of low symmetry," Mole. Phys. 70, 197–207 (1990).
    [CrossRef]
  7. R. F. Haglund Jr., L. Yang, R. H. Magruder III, J. E. Wittig, K. Becker, and R. A. Zuhr, "Picosecond nonlinear optical response of a Cu:silica nanocluster composite," Opt. Lett. 18, 373–375 (1993).
    [CrossRef] [PubMed]
  8. K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
    [CrossRef]
  9. See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
    [CrossRef]
  10. S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15, 1577–1585 (1960).
    [CrossRef]
  11. J. A. Osborn, "Demagnetizing factors of the general ellipsoid," Phys. Rev. 67, 351–357 (1945).
    [CrossRef]

1993 (2)

K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
[CrossRef]

R. F. Haglund Jr., L. Yang, R. H. Magruder III, J. E. Wittig, K. Becker, and R. A. Zuhr, "Picosecond nonlinear optical response of a Cu:silica nanocluster composite," Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

1992 (2)

M. J. Bloemer and J. W. Haus, "Versatile waveguide polarizer incorporating an ultrathin silver film," Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

1991 (2)

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

K. Baba and M. Miyagi, "Anisotropic optical media from laminated island films: theory," J. Opt. Soc. Am. A 8, 619–624 (1991).
[CrossRef]

1990 (1)

A. Leitner, "Second-harmonic generation in metal island films consisting of oriented silver particles of low symmetry," Mole. Phys. 70, 197–207 (1990).
[CrossRef]

1989 (1)

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

1960 (1)

S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15, 1577–1585 (1960).
[CrossRef]

1945 (1)

J. A. Osborn, "Demagnetizing factors of the general ellipsoid," Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Andersson, T.

See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
[CrossRef]

Baba, K.

K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
[CrossRef]

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

K. Baba and M. Miyagi, "Anisotropic optical media from laminated island films: theory," J. Opt. Soc. Am. A 8, 619–624 (1991).
[CrossRef]

Becker, K.

Bloemer, M. J.

M. J. Bloemer and J. W. Haus, "Versatile waveguide polarizer incorporating an ultrathin silver film," Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

Granqvist, C. G.

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
[CrossRef]

Haglund, R. F.

Haus, J. W.

M. J. Bloemer and J. W. Haus, "Versatile waveguide polarizer incorporating an ultrathin silver film," Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

Hunderi, O.

See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
[CrossRef]

Kataoka, H.

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

Kawakami, S.

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

Leitner, A.

A. Leitner, "Second-harmonic generation in metal island films consisting of oriented silver particles of low symmetry," Mole. Phys. 70, 197–207 (1990).
[CrossRef]

Ma, D.

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

Magruder, R. H.

Mbise, G.

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

Miyagi, M.

K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
[CrossRef]

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

K. Baba and M. Miyagi, "Anisotropic optical media from laminated island films: theory," J. Opt. Soc. Am. A 8, 619–624 (1991).
[CrossRef]

Nakao, S.

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Niklasson, G. A.

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

Norrman, S.

See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
[CrossRef]

Okuno, T.

K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
[CrossRef]

Osborn, J. A.

J. A. Osborn, "Demagnetizing factors of the general ellipsoid," Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Smith, G. B.

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

Tsuchida, K.

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

Wittig, J. E.

Yamada, R.

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Yamaguchi, S.

S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15, 1577–1585 (1960).
[CrossRef]

Yang, L.

Zuhr, R. A.

App. Phys. Lett. (1)

K. Baba, T. Okuno, and M. Miyagi, "Silver–gold compound metal island films prepared by using a two-step evaporation method," App. Phys. Lett. 62, 437–439 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

M. J. Bloemer and J. W. Haus, "Versatile waveguide polarizer incorporating an ultrathin silver film," Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Appl. Phys. Lett. 54, 987–989 (1989).
[CrossRef]

Electron. Lett. (1)

K. Baba, R. Yamada, S. Nakao, and M. Miyagi, "Three-dimensional optical disks using metallic island films: a proposal," Electron. Lett. 28, 676–678 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Soc. Jpn. (1)

S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15, 1577–1585 (1960).
[CrossRef]

Mole. Phys. (1)

A. Leitner, "Second-harmonic generation in metal island films consisting of oriented silver particles of low symmetry," Mole. Phys. 70, 197–207 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

J. A. Osborn, "Demagnetizing factors of the general ellipsoid," Phys. Rev. 67, 351–357 (1945).
[CrossRef]

Trans. Inst. Electron. Inf. Commun. Eng. (1)

D. Ma, K. Tsuchida, H. Kataoka, and S. Kawakami, "Laminated polarizer with granular metallic films for short wave-length region," Trans. Inst. Electron. Inf. Commun. Eng. J74-C-I, 552–558 (1991).

Other (1)

See, for example, S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold island films," Phys. Rev. B 18, 674–693 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical measured spectral transmittances of the Ag island film, the 3:2 CMI film, and the Au island film.

Fig. 2
Fig. 2

Microstructures of Ag, Au, and various Ag–Au CMI films observed with a SEM.

Fig. 3
Fig. 3

Measured number of islands N in 1 μm2 as a function of mixture ratio dAu/dTotal from the SEM observation.

Fig. 4
Fig. 4

Measured area fill fraction Q as a function of mixture ratio dAu/dTotal from the SEM observation.

Fig. 5
Fig. 5

Resonance wavelengths measured (circles with bars), calculated with Table 1 (solid curve), and calculated with the assumption that the islands are spherical (dashed curve).

Tables (2)

Tables Icon

Table 1 Evaluated l and p of Ag, Au, and Various Ag–Au CMI Films

Tables Icon

Table 2 Material Parameters of Ag and Au2

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( - ω 2 + j ω τ ) r = - e m 0 E L ,
E L = E + E D + E I ,
E D = - L P s 0 V ,
E I = F d m l P s 0 V ,
E L = E - ( L - d m l F ) P s 0 V .
P = V n 0 e r + V ( L - s ) 0 E L ,
P = [ L - s s + ( L - d m l F ) ( L - s ) s + B ω p 2 ω r 2 - ω 2 + j ω / τ ] V 0 E ,
B = s 2 / [ s + ( L - d m l F ) ( L - s ) ] 2 ,
ω p = ( n 0 e 2 / m 0 0 ) 1 / 2 ,
ω r = L - d m l F s + ( L - d m l F ) ( L - s ) ω p 2 .
eff 0 E = s 0 E + N 0 P .
N 0 V = d m / d h .
eff = A s + ( d m / d h ) B ω p 2 ω r 2 - ω 2 + j ω / τ ,
A = 1 + d m d h L - s s + ( L - d m l F ) ( L - s ) .
λ R = λ p [ e s L - ( d m / l ) F + ( L - s ) ] 1 / 2 ,
l = 1 / N .
L = 1 2 ( 1 - p 2 ) { 1 - p 2 2 ( 1 - p 2 ) 1 / 2 ln [ 1 + ( 1 - p 2 ) 1 / 2 1 - ( 1 - p 2 ) 1 / 2 ] }             for the prolate case .
= 1 2 ( p 2 - 1 ) { p 2 ( p 2 - 1 ) 1 / 2 tan - 1 [ ( p 2 - 1 ) 1 / 2 ] - 1 }             for the oblate case .
p = 4 Q 3 / 2 l 3 d m π ,
Q = π a 2 / 4 l 2 ,
V = d m l 2 = π a 3 / 6 p .
λ p = 1 / [ ( 1 λ Ag ) 2 ( 1 - x ) + ( 1 λ Au ) 2 x ] 1 / 2 , L = Ag ( 1 - x ) + Au x ,

Metrics