Abstract

We have used spectrally broadened counterpropagating radiation from tunable diode lasers to cool an atomic beam of cesium. This produces a continuous beam of cold atoms. The injection current to the single-mode diode laser is modulated at 10 MHz, resulting in spectrally broadened light for atomic cooling and optical pumping. The atomic beam is probed with a weak single-mode laser. This is a simple and relatively inexpensive method for producing a continuous supply of cold atoms.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. See the feature issue on laser cooling and trapping of atoms, J. Opt. Soc. Am. B 6, 2020–2278 (1989).
  2. W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982); J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
    [CrossRef] [PubMed]
  3. W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
    [CrossRef] [PubMed]
  4. D. Sesko, C. G. Fan, and C. E. Wieman, Opt. Lett. 5, 1225 (1988).
  5. C. J. Foot, Contemp. Phys. 32, 369 (1991); J. L. Hall, M. Zhu, and P. Buch, J. Opt. Soc. Am. B 6, 2194 (1989).
    [CrossRef]
  6. J. Hoffnagle, Opt. Lett. 13, 102 (1988).
    [CrossRef] [PubMed]
  7. M. Zhu, C. W. Oates, and J. L. Hall, Phys. Rev. Lett. 67, 46 (1991).
    [CrossRef] [PubMed]
  8. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
    [CrossRef]

Blatt, R.

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Ertmer, W.

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Fan, C. G.

D. Sesko, C. G. Fan, and C. E. Wieman, Opt. Lett. 5, 1225 (1988).

Foot, C. J.

C. J. Foot, Contemp. Phys. 32, 369 (1991); J. L. Hall, M. Zhu, and P. Buch, J. Opt. Soc. Am. B 6, 2194 (1989).
[CrossRef]

Hall, J. L.

M. Zhu, C. W. Oates, and J. L. Hall, Phys. Rev. Lett. 67, 46 (1991).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Hoffnagle, J.

J. Hoffnagle, Opt. Lett. 13, 102 (1988).
[CrossRef] [PubMed]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Metcalf, H.

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982); J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Oates, C. W.

M. Zhu, C. W. Oates, and J. L. Hall, Phys. Rev. Lett. 67, 46 (1991).
[CrossRef] [PubMed]

Phillips, W. D.

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982); J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Sesko, D.

D. Sesko, C. G. Fan, and C. E. Wieman, Opt. Lett. 5, 1225 (1988).

Wieman, C. E.

D. Sesko, C. G. Fan, and C. E. Wieman, Opt. Lett. 5, 1225 (1988).

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Zhu, M.

M. Zhu, C. W. Oates, and J. L. Hall, Phys. Rev. Lett. 67, 46 (1991).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Other

See the feature issue on laser cooling and trapping of atoms, J. Opt. Soc. Am. B 6, 2020–2278 (1989).

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982); J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

D. Sesko, C. G. Fan, and C. E. Wieman, Opt. Lett. 5, 1225 (1988).

C. J. Foot, Contemp. Phys. 32, 369 (1991); J. L. Hall, M. Zhu, and P. Buch, J. Opt. Soc. Am. B 6, 2194 (1989).
[CrossRef]

J. Hoffnagle, Opt. Lett. 13, 102 (1988).
[CrossRef] [PubMed]

M. Zhu, C. W. Oates, and J. L. Hall, Phys. Rev. Lett. 67, 46 (1991).
[CrossRef] [PubMed]

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the cesium atomic beam apparatus and the various lasers. The relevant energy-level diagram for the cesium atom is also shown.

Fig. 2
Fig. 2

Spectral profile of the cooling and pumping lasers for various modulation frequencies. (a) Spectral profile of the single-mode laser with a typical linewidth of <10 MHz. (b) Spectral broadening for 10-MHz sinusoidal modulation of the laser injection current. (c) 50-MHz modulation, in which individual sidebands are resolved. (d) 350-MHz modulation. Note the change in the horizontal scale for the various modulation frequencies. (e) Spectral profile for 350- and 10-MHz modulation frequencies. The 10-MHz modulation essentially broadens the carrier and sidebands generated by the 350-MHz modulation.

Fig. 3
Fig. 3

Absorption spectra (velocity profiles) of the atomic beam interacting with spectrally broadened cooling and pumping lasers for various tuning conditions of the cooling laser. The absorption spectrum is folded with the probe laser profile, which is ~40 MHz wide. (a) Fluorescence signal induced by the transverse probe as a function of the probe laser frequency. (b) Cooling laser off—this is the velocity profile of the optically pumped thermal beam. (c) Effect of a narrow cooling laser on the absorption spectrum. In this and the subsequent figures the shaded rectangles represent the frequency domain of the cooling laser. (d) Modification in the velocity profile that is due to the spectrally broadened cooling laser. Note the change in the vertical scale. (e) Velocity profile of the cooled atomic beam. The reduction in the peak velocity and a substantial narrowing of the velocity spread is evident. (f) Atomic beam velocity profile when the center frequency of the cooling laser is tuned closer to the rest-frame transition frequency. Though the translational cooling is substantial, the velocity spread is only slightly smaller than the previous case. (g) Velocity profile of the cooled atomic beam with the peak velocity corresponding to 1.6 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 exp { j [ 2 π f 0 t + β sin ( 2 π f m t ) ] } ,
E = J 0 ( β ) E 0 sin ( 2 π f 0 t ) + J 1 ( β ) E 0 sin [ 2 π ( f 0 + f m ) t ] - J 1 ( β ) E 0 sin [ 2 π ( f 0 - f m ) t ] + + J l ( β ) E 0 sin [ 2 π ( f 0 + l f m ) t ] + ( - 1 ) l J l ( β ) E 0 sin [ 2 π ( f 0 - l f m ) t ] + .

Metrics