Abstract

We have constructed a numerical model of seeded optical parametric oscillators that is appropriate for nanosecond or longer pulsed operation. We have also experimentally characterized the performance of a KTP ring optical parametric oscillator. We present a description of the model and show that its predictions agree well with the observed oscillator performance. We compare spatial beam quality, spectra, efficiency, and full-beam and spatially resolved temporal profiles. Backconversion of signal and idler light to pump is found to affect all the aspects of performance.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
    [CrossRef]
  2. Y. Cui, D. E. Withers, C. G. Rae, C. J. Norrie, Y. Tang, B. D. Sinclair, W. Sibbett, and M. H. Dunn, “Widely tunable all-solid-state optical parametric oscillator for the visible and near infrared,” Opt. Lett. 18, 122–124 (1993).
    [CrossRef] [PubMed]
  3. K. Kato, “Parametric oscillation in LiB3O5pumped at 0.532 μ m,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
    [CrossRef]
  4. Y. Tang, Y. Cui, and M. H. Dunn, “Lithium triborate optical parametric oscillator pumped at 266 nm,” Opt. Lett. 17, 192–194 (1992).
    [CrossRef] [PubMed]
  5. G. Robertson, A. Henderson, and M. H. Dunn, “Attainment of high efficiencies in optical parametric oscillators,” Opt. Lett. 16, 1584–1586 (1991).
    [CrossRef] [PubMed]
  6. F. Hanson and D. Dick, “Blue parametric generation from temperature-tuned LiB3O5,” Opt. Lett. 16, 205–207 (1991).
    [CrossRef] [PubMed]
  7. G. J. Hall and A. I. Ferguson, “LiB3O5optical parametric oscillator pumped by a Q-switched frequency-doubled all-solid-state laser,” Opt. Lett. 18, 1511–1513 (1993).
    [CrossRef] [PubMed]
  8. N. P. Barnes, K. E. Murray, and G. H. Watson, “Injection-seeded optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 13 of 1992 OSA Proceedings Series, L. L. Chase and A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 356–360.
  9. P. A. Budni, M. G. Knights, E. P. Chicklis, and K. L. Shepler, “Kilohertz AgGaSe2optical parametric oscillator pumped at 2 μ m,” Opt. Lett. 18, 1068–1070 (1993).
    [CrossRef] [PubMed]
  10. M. J. T. Milton, T. D. Gardiner, G. Chourdakis, and P. T. Woods, “Injection seeding of an infrared optical parametric oscillator with a tunable diode laser,” Opt. Lett. 19, 281–283 (1994).
    [CrossRef] [PubMed]
  11. D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
    [CrossRef]
  12. W. R. Bosenberg and R. H. Jarman, “Type-II phase-matched KNbO3optical parametric oscillator,” Opt. Lett. 16, 1323–1325 (1993).
    [CrossRef]
  13. M. Ebrahimzadeh, A. J. Henderson, and M. H. Dunn, “An excimer-pumped β-BaB2O3optical parametric oscillator tunable from 354 nm to 2.370 μ m,” IEEE J. Quantum Electron. 26, 1241–1252 (1990).
    [CrossRef]
  14. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
    [CrossRef]
  15. W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
    [CrossRef]
  16. M. D. Turner, L. Hanko, and M. J. McAuliffe, “Synchronously pumped gigahertz modulated optical parametric oscillator,” J. Opt. Soc. Am. B 11, 632–635 (1994).
    [CrossRef]
  17. K. Kato and M. Masutani, “Widely tunable 90° phase-matched KTP parametric oscillator,” Opt. Lett. 17, 178–180 (1992).
    [CrossRef] [PubMed]
  18. J. T. Lin and J. L. Montgomery, “Generation of tunable mid-IR (1.8–2.4μm) laser from optical parametric oscillation in KTP,” Opt. Commun. 75, 315–320 (1990).
    [CrossRef]
  19. W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
    [CrossRef]
  20. L. R. Marshall, A. Kaz, and O. Aytur, “Continuously tunable diode-pumped UV–blue laser source,” Opt. Lett. 18, 817–819 (1993).
    [CrossRef] [PubMed]
  21. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-18, 415–431 (1979).
    [CrossRef]
  22. S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
    [CrossRef]
  23. J. A. C. Terry, Y. Cui, Y. Yang, W. Sibbett, and M. H. Dunn, “Low-threshold operation of an all-solid-state KTP optical parametric oscillator,” J. Opt. Soc. Am. B 11, 758–769 (1994).
    [CrossRef]
  24. J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.
  25. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1993).
    [CrossRef]
  26. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1224, 2–14 (1990).
    [CrossRef]
  27. M. A. Dreger and J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990).
    [CrossRef]
  28. M. Nieto-Vesperinas and G. Lera, “Solution to nonlinear optical mixing equations with depletion and diffraction: difference-frequency generation,” Opt. Commun. 69, 329–333 (1980).
    [CrossRef]
  29. S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
    [CrossRef]
  30. P. Pliszka and P. P. Banerjee, “Nonlinear transverse effects in second-harmonic generation,” J. Opt. Soc. Am. B 10, 1810–1819 (1993).
    [CrossRef]
  31. A. V. Smith and M. S. Bowers, “Phase distortions in sum-and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
    [CrossRef]
  32. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.
  33. T. D. Raymond, W. J. Alford, A. V. Smith, and M. S. Bowers, “Frequency shifts in injection-seeded optical parametric oscillators with phase mismatch,” J. Opt. Soc. Am. B 19, 1520–1522 (1994).
  34. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  35. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [CrossRef] [PubMed]

1995 (1)

1994 (4)

1993 (7)

1992 (4)

1991 (3)

1990 (4)

K. Kato, “Parametric oscillation in LiB3O5pumped at 0.532 μ m,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

J. T. Lin and J. L. Montgomery, “Generation of tunable mid-IR (1.8–2.4μm) laser from optical parametric oscillation in KTP,” Opt. Commun. 75, 315–320 (1990).
[CrossRef]

M. Ebrahimzadeh, A. J. Henderson, and M. H. Dunn, “An excimer-pumped β-BaB2O3optical parametric oscillator tunable from 354 nm to 2.370 μ m,” IEEE J. Quantum Electron. 26, 1241–1252 (1990).
[CrossRef]

M. A. Dreger and J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990).
[CrossRef]

1989 (3)

J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

1982 (1)

S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

1980 (1)

M. Nieto-Vesperinas and G. Lera, “Solution to nonlinear optical mixing equations with depletion and diffraction: difference-frequency generation,” Opt. Commun. 69, 329–333 (1980).
[CrossRef]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-18, 415–431 (1979).
[CrossRef]

1965 (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[CrossRef]

Alford, W. J.

T. D. Raymond, W. J. Alford, A. V. Smith, and M. S. Bowers, “Frequency shifts in injection-seeded optical parametric oscillators with phase mismatch,” J. Opt. Soc. Am. B 19, 1520–1522 (1994).

Aytur, O.

Banerjee, P. P.

Barnes, N. P.

N. P. Barnes, K. E. Murray, and G. H. Watson, “Injection-seeded optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 13 of 1992 OSA Proceedings Series, L. L. Chase and A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 356–360.

Bierlein, J. D.

Bosenberg, W. R.

W. R. Bosenberg and R. H. Jarman, “Type-II phase-matched KNbO3optical parametric oscillator,” Opt. Lett. 16, 1323–1325 (1993).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Bowers, M. S.

A. V. Smith and M. S. Bowers, “Phase distortions in sum-and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
[CrossRef]

T. D. Raymond, W. J. Alford, A. V. Smith, and M. S. Bowers, “Frequency shifts in injection-seeded optical parametric oscillators with phase mismatch,” J. Opt. Soc. Am. B 19, 1520–1522 (1994).

Breteau, J. M.

J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-18, 415–431 (1979).
[CrossRef]

Budni, P. A.

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-18, 415–431 (1979).
[CrossRef]

Campbell, B. F.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
[CrossRef]

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Chicklis, E. P.

Chourdakis, G.

Cui, Y.

DeSalvo, R.

Dick, D.

Dreger, M. A.

Dunn, M. H.

Ebrahimzadeh, M.

M. Ebrahimzadeh, A. J. Henderson, and M. H. Dunn, “An excimer-pumped β-BaB2O3optical parametric oscillator tunable from 354 nm to 2.370 μ m,” IEEE J. Quantum Electron. 26, 1241–1252 (1990).
[CrossRef]

Falk, J.

S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Ferguson, A. I.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.

Gardiner, T. D.

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[CrossRef]

Guha, S.

S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Guthals, D. M.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
[CrossRef]

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

Hagan, D. J.

Hall, G. J.

Hanko, L.

Hanson, F.

Henderson, A.

Henderson, A. J.

M. Ebrahimzadeh, A. J. Henderson, and M. H. Dunn, “An excimer-pumped β-BaB2O3optical parametric oscillator tunable from 354 nm to 2.370 μ m,” IEEE J. Quantum Electron. 26, 1241–1252 (1990).
[CrossRef]

Hovde, D. C.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Hu, P. H.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
[CrossRef]

Jarman, R. H.

W. R. Bosenberg and R. H. Jarman, “Type-II phase-matched KNbO3optical parametric oscillator,” Opt. Lett. 16, 1323–1325 (1993).
[CrossRef]

Jourdain, C.

J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.

Kato, K.

K. Kato and M. Masutani, “Widely tunable 90° phase-matched KTP parametric oscillator,” Opt. Lett. 17, 178–180 (1992).
[CrossRef] [PubMed]

K. Kato, “Parametric oscillation in LiB3O5pumped at 0.532 μ m,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

Kaz, A.

Knights, M. G.

Lehman, K. K.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Lepine, T.

J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.

Lera, G.

M. Nieto-Vesperinas and G. Lera, “Solution to nonlinear optical mixing equations with depletion and diffraction: difference-frequency generation,” Opt. Commun. 69, 329–333 (1980).
[CrossRef]

Lin, J. T.

J. T. Lin and J. L. Montgomery, “Generation of tunable mid-IR (1.8–2.4μm) laser from optical parametric oscillation in KTP,” Opt. Commun. 75, 315–320 (1990).
[CrossRef]

Ma, S. S.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
[CrossRef]

Marshall, L. R.

Masutani, M.

McAuliffe, M. J.

McIver, J. K.

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[CrossRef]

Milton, M. J. T.

Montgomery, J. L.

J. T. Lin and J. L. Montgomery, “Generation of tunable mid-IR (1.8–2.4μm) laser from optical parametric oscillation in KTP,” Opt. Commun. 75, 315–320 (1990).
[CrossRef]

Murray, K. E.

N. P. Barnes, K. E. Murray, and G. H. Watson, “Injection-seeded optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 13 of 1992 OSA Proceedings Series, L. L. Chase and A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 356–360.

Nieto-Vesperinas, M.

M. Nieto-Vesperinas and G. Lera, “Solution to nonlinear optical mixing equations with depletion and diffraction: difference-frequency generation,” Opt. Commun. 69, 329–333 (1980).
[CrossRef]

Norrie, C. J.

Pelouch, W. S.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
[CrossRef]

Pliszka, P.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.

Rae, C. G.

Raymond, T. D.

T. D. Raymond, W. J. Alford, A. V. Smith, and M. S. Bowers, “Frequency shifts in injection-seeded optical parametric oscillators with phase mismatch,” J. Opt. Soc. Am. B 19, 1520–1522 (1994).

Robertson, G.

Scoles, G.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Sheik-Bahae, M.

Shepler, K. L.

Sibbett, W.

Siegman, A. E.

A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1993).
[CrossRef]

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1224, 2–14 (1990).
[CrossRef]

Simon, F.

J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.

Sinclair, B. D.

Smith, A. V.

A. V. Smith and M. S. Bowers, “Phase distortions in sum-and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
[CrossRef]

T. D. Raymond, W. J. Alford, A. V. Smith, and M. S. Bowers, “Frequency shifts in injection-seeded optical parametric oscillators with phase mismatch,” J. Opt. Soc. Am. B 19, 1520–1522 (1994).

Stegeman, G.

Tang, C. L.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Tang, Y.

Terry, J. A. C.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.

Timmermans, J. H.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Turner, M. D.

Van Stryland, E. W.

Vanherzeele, H.

Vettering, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.

Watson, G. H.

N. P. Barnes, K. E. Murray, and G. H. Watson, “Injection-seeded optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 13 of 1992 OSA Proceedings Series, L. L. Chase and A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 356–360.

Withers, D. E.

Woods, P. T.

Wu, F.-J.

S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Yang, Y.

Appl. Phys. Lett. (3)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O3optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Ultraviolet optical parametric oscillation in β-BaB2O3,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1993).
[CrossRef]

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-18, 415–431 (1979).
[CrossRef]

S. Guha, F.-J. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

M. Ebrahimzadeh, A. J. Henderson, and M. H. Dunn, “An excimer-pumped β-BaB2O3optical parametric oscillator tunable from 354 nm to 2.370 μ m,” IEEE J. Quantum Electron. 26, 1241–1252 (1990).
[CrossRef]

K. Kato, “Parametric oscillation in LiB3O5pumped at 0.532 μ m,” IEEE J. Quantum Electron. 26, 2043–2045 (1990).
[CrossRef]

J. Opt. Soc. Am. B (7)

Opt. Commun. (3)

M. Nieto-Vesperinas and G. Lera, “Solution to nonlinear optical mixing equations with depletion and diffraction: difference-frequency generation,” Opt. Commun. 69, 329–333 (1980).
[CrossRef]

J. T. Lin and J. L. Montgomery, “Generation of tunable mid-IR (1.8–2.4μm) laser from optical parametric oscillation in KTP,” Opt. Commun. 75, 315–320 (1990).
[CrossRef]

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehman, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Opt. Lett. (11)

W. R. Bosenberg and R. H. Jarman, “Type-II phase-matched KNbO3optical parametric oscillator,” Opt. Lett. 16, 1323–1325 (1993).
[CrossRef]

K. Kato and M. Masutani, “Widely tunable 90° phase-matched KTP parametric oscillator,” Opt. Lett. 17, 178–180 (1992).
[CrossRef] [PubMed]

Y. Tang, Y. Cui, and M. H. Dunn, “Lithium triborate optical parametric oscillator pumped at 266 nm,” Opt. Lett. 17, 192–194 (1992).
[CrossRef] [PubMed]

G. Robertson, A. Henderson, and M. H. Dunn, “Attainment of high efficiencies in optical parametric oscillators,” Opt. Lett. 16, 1584–1586 (1991).
[CrossRef] [PubMed]

F. Hanson and D. Dick, “Blue parametric generation from temperature-tuned LiB3O5,” Opt. Lett. 16, 205–207 (1991).
[CrossRef] [PubMed]

G. J. Hall and A. I. Ferguson, “LiB3O5optical parametric oscillator pumped by a Q-switched frequency-doubled all-solid-state laser,” Opt. Lett. 18, 1511–1513 (1993).
[CrossRef] [PubMed]

Y. Cui, D. E. Withers, C. G. Rae, C. J. Norrie, Y. Tang, B. D. Sinclair, W. Sibbett, and M. H. Dunn, “Widely tunable all-solid-state optical parametric oscillator for the visible and near infrared,” Opt. Lett. 18, 122–124 (1993).
[CrossRef] [PubMed]

P. A. Budni, M. G. Knights, E. P. Chicklis, and K. L. Shepler, “Kilohertz AgGaSe2optical parametric oscillator pumped at 2 μ m,” Opt. Lett. 18, 1068–1070 (1993).
[CrossRef] [PubMed]

M. J. T. Milton, T. D. Gardiner, G. Chourdakis, and P. T. Woods, “Injection seeding of an infrared optical parametric oscillator with a tunable diode laser,” Opt. Lett. 19, 281–283 (1994).
[CrossRef] [PubMed]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[CrossRef] [PubMed]

L. R. Marshall, A. Kaz, and O. Aytur, “Continuously tunable diode-pumped UV–blue laser source,” Opt. Lett. 18, 817–819 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3at optical frequencies,” Phys. Rev. Lett. 14, 973–976 (1965).
[CrossRef]

Other (5)

N. P. Barnes, K. E. Murray, and G. H. Watson, “Injection-seeded optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 13 of 1992 OSA Proceedings Series, L. L. Chase and A. A. Pinto, eds. (Optical Society of America, Washington, D.C., 1992), pp. 356–360.

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1224, 2–14 (1990).
[CrossRef]

J. M. Breteau, C. Jourdain, T. Lepine, and F. Simon, “Numerical simulation and realization of a KTP optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1993 OSA Proceedings, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 118–120.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–141 (1993).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in fortran (Cambridge U. Press, New York, 1992), pp. 704–716.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of laboratory KTP ring OPO. HR, high reflector.

Fig. 2
Fig. 2

Schematic diagram of OPO experiment. SLM, single longitudinal mode.

Fig. 3
Fig. 3

Power (a) and fluence (b) profiles of the incident pump beam. The dots represent the experimental data, and the curves are least-squares fits of Gaussians to the experiment.

Fig. 4
Fig. 4

Measured and predicted output (a) signal energy and (b) efficiency are shown for both seeded and unseeded operation. Note that when the OPO is seeded both the threshold is reduced and the efficiency is increased.

Fig. 5
Fig. 5

Measured [(a), (c)] and calculated [(b), (d)] contour plots of the fluence spatial profiles of the depleted pump [(a), (b)] and the signal [(c), (d)] beams measured 30 cm from the OPO output mirror when the OPO is pumped at 1.6 J/cm2 (2.3 times threshold), and the phase mismatch is zero. The peak measured (calculated) depleted pump fluence is 1.17 (0.84) J/cm2, and each contour is separated by 0.1 J/cm2. The peak measured (calculated) signal fluence is 0.67 (0.53) J/cm2, and each contour is separated by 0.05 J/cm2.

Fig. 6
Fig. 6

Measured [(a), (c)] and calculated [(b), (d)] contour plots of the fluence spatial profiles of the depleted pump [(a), (b)] and the signal [(c), (d)] beams measured 30 cm from the OPO output mirror, when the OPO is pumped at 2.5 J/cm2 (3.5 times threshold), and the phase mismatch is zero. The peak measured (calculated) depleted pump fluence is 2.27 (1.55) J/cm2 and the contours are separated by 0.25 J/cm2. The peak measured (calculated) signal fluence is 0.95 (0.97) J/cm2, and each contour is separated by 0.1 J/cm2.

Fig. 7
Fig. 7

Beam-quality factor M2 for various pump fluences. The symbols represent the experimental data, and the curves are model predictions. The better beam quality in the critical direction is caused by the strong angular dependence of the gain in the critically phase-matched KTP crystal.

Fig. 8
Fig. 8

Spatially integrated power profiles of (a) the incident and the depleted pump, (b) the signal beam, and (c) the idler beam when the OPO is pumped at 1.6 J/cm2 (2.3 times threshold).

Fig. 9
Fig. 9

Spatially integrated power profiles of (a) the incident and the depleted pump, (b) the signal beam, and (c) the idler beam when the OPO is pumped at 2.5 J/cm2 (3.6 times threshold). Note: an experimental profile for the idler is not available.

Fig. 10
Fig. 10

Measured fluence profile of the depleted pump and spatially resolved power profiles at locations in the beam indicated by the arrows. Shown are wave forms for the incident pump (+’s) the depleted pump (dots), and the calculated depleted pump (dashed curves). The incident pump fluence is 1.6 J/cm2 (2.3 times threshold).

Fig. 11
Fig. 11

Measured fluence profile of the signal and spatially resolved power profiles at locations in the beam indicated by the arrows. Shown are wave forms for the measured (dots) and the calculated (dashed curves) signal-wave forms. The incident pump fluence is 1.6 J/cm2 (2.3 times threshold). The signal peak fluence is 0.54 J/cm2.

Fig. 12
Fig. 12

Calculated energy fluence profile of the idler and spatially resolved power profiles at locations in the beam indicated by the arrows. An experimental spatial profile was not available. Shown are the wave forms for the measured (dots) and the calculated (curves) idler-wave forms. The incident pump fluence is 1.6 J/cm2 (2.3 times threshold). The idler peak fluence is calculated to be 0.2 J/cm2.

Fig. 13
Fig. 13

Spectra of the signal for pump levels (in J/cm2) of (a) 1.6 and (b) 2.5. The dots represent the measured spectra, and the solid curves are the model predictions. The dashed curves show the Fourier transform of the spatially integrated time profiles.

Fig. 14
Fig. 14

Spectra of the depleted pump at pump levels (in J/cm2) of (a) 1.6 and (b) 2.5. The dots represent the measured spectra, and the solid curves are the model predictions. The dashed curves show the Fourier transform of the spatially integrated time profiles.

Fig. 15
Fig. 15

Measured [(a), (c)] and calculated [(b), (d)] contour plots of the energy fluence profiles of the depleted pump [(a), (b)] and the signal [(c), (d)] beams when a phase mismatch is intentionally introduced by rotation of the KTP crystal. The OPO is pumped at 2.5 J/cm2, and the phase mismatch, ΔkL, is −0.64. The peak measured (calculated) depleted pump fluence is 1 (1.0) J/cm2, and the contours are separated by 0.1 J/cm2. The peak measured (calculated) signal fluence is 0.25 (0.53) J/cm2, and the contours are separated by 0.05 J/cm2.

Fig. 16
Fig. 16

Measured [(a), (c)] and calculated [(b), (d)] contour plots of the energy fluence profiles of the depleted pump [(a), (b)] and the signal [(c), (d)] beams when a phase mismatch is intentionally introduced by rotation of the KTP crystal. The OPO is pumped at 2.5 J/cm2, and the phase mismatch, ΔkL, is +2.88. The peak measured (calculated) depleted pump fluence is 3.1 (2.65) J/cm2, and the contours are separated by 0.25 J/cm2. The peak measured (calculated) signal fluence is 0.42 (0.76) J/cm2, and the contours are separated by 0.1 J/cm2.

Fig. 17
Fig. 17

Spectra of the signal beam for different values of phase mismatch. The measured (dots) and the calculated (curves) profiles are shown for ΔkL values of (a) +2.1, (b) 0.0, and (c) −1.65. The OPO is pumped at 1.6 J/cm2.

Fig. 18
Fig. 18

Spectrum of the signal beam with ΔkL = −0.64 and the OPO pumped at 2.5 J/cm2.

Tables (1)

Tables Icon

Table 1 Typical OPO Parameters

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ɛ j ( x , y , z , t ) z = i 2 k j [ 2 ɛ j ( x , y , z , t ) y 2 + 2 ɛ j ( x , y , z , t ) x 2 ] - tan ( ρ j ) ɛ j ( x , y , z , t ) x + P j ( x , y , z , t ) - α j ɛ j ( x , y , z , t ) ,
E j = ½ { ɛ j exp [ - i ( ω j t - k j z ) ] + ɛ j * exp [ i ( ω j t - k j z ) ] } .
P s ( x , y , z , t ) = i d eff ω s c n s ɛ p ( x , y , z , t ) ɛ i * ( x , y , z , t ) × exp ( i Δ k z ) ,
P i ( x , y , z , t ) = i d eff ω i c n i ɛ p ( x , y , z , t ) ɛ s * ( x , y , z , t ) × exp ( i Δ k z ) ,
P p ( x , y , z , t ) = i d eff ω p c n p ɛ i ( x , y , z , t ) ɛ s ( x , y , z , t ) × exp ( - i Δ k z ) ,
Δ k = k p - k s - k i .
ɛ j ( x , y , z , t ) = - ɛ ˜ j ( s x , s y , z , t ) × exp [ i 2 π ( s x x + s y y ) ] d s x d s y ,
P j ( x , y , z , t ) = - P ˜ j ( s x , s y , z , t ) × exp [ i 2 π ( s x x + s y y ) ] d s x d s y ,
ɛ ˜ j ( s x , s y , z , t ) z = - i [ 2 π 2 k j ( s x 2 + s y 2 ) + 2 π s y tan ( ρ j ) ] × ɛ ˜ j ( s x , s y , z , t ) + P ˜ j ( s x , s y , z , t ) .
U = - - - ɛ ( x , y , t ) 2 d x d y d t = - - - ɛ ˜ ( s x , s y , t ) 2 d s x d s y d t ,
x ¯ ( z ) = 1 U - - x [ - ɛ ( x , y , z , t ) 2 d t ] d x d y ,
s ¯ x = 1 U - - s x [ - ɛ ˜ ( s x , s y , t ) 2 d t ] d s x d s y .
x ¯ ( z ) = x ¯ ( 0 ) + λ z s ¯ x .
σ x 2 ( z ) = 1 U - - [ x - x ¯ ( z ) ] 2 [ - ɛ ( x , y , z , t ) 2 d t ] × d x d y ,
σ s x 2 = 1 U - - ( s x - s ¯ x ) 2 [ - ɛ ˜ ( s x , s y , t ) 2 d t ] × d s x d s y .
σ x 2 ( z ) = σ x 2 ( 0 ) - [ A x ( 0 ) + 2 λ x ¯ ( 0 ) s ¯ x ] z + λ 2 σ s x 2 z 2 ,
A x ( z ) = λ π U - - x × { - d t Im [ ɛ ( x , y , z , t ) ɛ * ( x , y , z , t ) x ] } d x d y .
σ 0 x 2 = σ x 2 ( z ) - [ A x ( z ) + 2 λ x ¯ ( z ) s ¯ x ] 2 4 λ 2 σ s x 2 ,
M x 2 = 4 π σ 0 x σ s x ,
R x ( z ) = - 2 σ x 2 ( z ) A x ( z ) + 2 λ x ¯ ( z ) s ¯ x ,
w 2 ( z ) 4 σ 2 ( z ) = w 0 2 + [ M 2 λ ( z - z 0 ) π w 0 ] 2 ,

Metrics