Abstract

The picosecond parametric amplification of a polychromatic image with a wavelength bandwidth of 140 nm and a gain of 15 dB has been obtained in a lithium triborate type-I crystal (LBO). Approximately 8 lines/mm in both lateral dimensions were resolved in the crystal plane. This resolution value is in good agreement with a numerical study of the phase-matching conditions near collinear degeneracy, where phase matching is noncritical for the signal beam in angle as well as in wavelength. The parametric amplification of a monochromatic image in LBO is also studied. Because their polarizations are identical, the signal and the idler can interfere, leading to phase-sensitive amplification.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
    [CrossRef]
  2. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
    [CrossRef]
  3. M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1970).
    [CrossRef]
  4. A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
    [CrossRef]
  5. S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
    [CrossRef]
  6. P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
    [CrossRef]
  7. D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS, Mclean, Va., 1990), 808–815.
  8. F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).
  9. F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
    [CrossRef]
  10. F. Devaux and E. Lantz, “Ultrahigh-speed imaging by parametric amplification,” Opt. Commun. 118, 25–27 (1995).
    [CrossRef]
  11. D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
    [CrossRef]
  12. E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
    [CrossRef]
  13. The concept of one-beam noncritical phase matching is different from the usual concept of noncritical phase matching. It was introduced in S. X. Dou, D. Josse, and J. Zyss, “Noncritical properties of noncollinear phase-matched second-harmonic and sum-frequency generation in 3-methyl-4-nitropyridine-1-oxide,” J. Opt. Soc. Am. B 8, 1732–1739 (1991).
    [CrossRef]
  14. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chap. 17, p. 407.
  15. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
    [CrossRef]
  16. M. I. Kolobov and I. V. Sokolov, “Squeezed states of light and noise-free optical images,” Phys. Lett. A 140, 101–104 (1989).
    [CrossRef]
  17. M. I. Kolobov and L. A. Lugiato, University of Milan, Milan, Italy, personal communication, 1995).
  18. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
    [CrossRef]
  19. J. A. Levenson, I. Abram, and T. Rivera, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993).
    [CrossRef]
  20. J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
    [CrossRef]
  21. J. T. Lin, lecture for tutorial short course on advances and applications of new nonlinear crystals, presented at the Society of Photo-Optical Instrumentation Engineers Symposia on Aerospace Sensing, Orlando, Fla., 1989.
  22. A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1989), Chap. 18, p. 466.

1995 (3)

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

F. Devaux and E. Lantz, “Ultrahigh-speed imaging by parametric amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

1993 (2)

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

J. A. Levenson, I. Abram, and T. Rivera, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993).
[CrossRef]

1991 (1)

1990 (1)

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
[CrossRef]

1989 (3)

C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

M. I. Kolobov and I. V. Sokolov, “Squeezed states of light and noise-free optical images,” Phys. Lett. A 140, 101–104 (1989).
[CrossRef]

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

1987 (1)

A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
[CrossRef]

1986 (2)

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[CrossRef]

1970 (1)

1967 (1)

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

Abram, I.

Antonetti, A.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Badan, J.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Campbell, B. F.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
[CrossRef]

Cardimona, D.

A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
[CrossRef]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[CrossRef]

Chen, C.

Devaux, F.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

F. Devaux and E. Lantz, “Ultrahigh-speed imaging by parametric amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Doreau, P. A.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

Dou, S. X.

Duguay, M. A.

Fainman, Y.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Gavrielides, A.

A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
[CrossRef]

Gindre, D.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

Guthals, D.

D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS, Mclean, Va., 1990), 808–815.

Guthals, D. M.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
[CrossRef]

Han, L.

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Hu, P. H.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
[CrossRef]

Hulin, D.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Jiang, A.

Josse, D.

Kato, K.

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
[CrossRef]

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Kolobov, M. I.

M. I. Kolobov and I. V. Sokolov, “Squeezed states of light and noise-free optical images,” Phys. Lett. A 140, 101–104 (1989).
[CrossRef]

M. I. Kolobov and L. A. Lugiato, University of Milan, Milan, Italy, personal communication, 1995).

Kramer, M. A.

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

Lacourt, A.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Laferriere, P. A.

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

Lantz, E.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

F. Devaux and E. Lantz, “Ultrahigh-speed imaging by parametric amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Laurent, T.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

Ledoux, I.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Levenson, J. A.

Li, R.

Lin, J. T.

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
[CrossRef]

J. T. Lin, lecture for tutorial short course on advances and applications of new nonlinear crystals, presented at the Society of Photo-Optical Instrumentation Engineers Symposia on Aerospace Sensing, Orlando, Fla., 1989.

Lin, S.

Lugiato, L. A.

M. I. Kolobov and L. A. Lugiato, University of Milan, Milan, Italy, personal communication, 1995).

Ma, S. S.

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
[CrossRef]

Maillotte, H.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

Mattick, A. T.

Midwinter, J. E.

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

Migus, A.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Montgomery, J. L.

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
[CrossRef]

Oudar, J. L.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Peterson, P.

A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
[CrossRef]

Rivera, T.

Schelonka, L. P.

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

Sokolov, I. V.

M. I. Kolobov and I. V. Sokolov, “Squeezed states of light and noise-free optical images,” Phys. Lett. A 140, 101–104 (1989).
[CrossRef]

Sox, D.

D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS, Mclean, Va., 1990), 808–815.

Warner, J.

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

Wetterer, C. J.

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

Wu, B.

Wu, Y.

Yariv, A.

A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1989), Chap. 18, p. 466.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chap. 17, p. 407.

You, G.

Zyss, J.

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

The concept of one-beam noncritical phase matching is different from the usual concept of noncritical phase matching. It was introduced in S. X. Dou, D. Josse, and J. Zyss, “Noncritical properties of noncollinear phase-matched second-harmonic and sum-frequency generation in 3-methyl-4-nitropyridine-1-oxide,” J. Opt. Soc. Am. B 8, 1732–1739 (1991).
[CrossRef]

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J. L. Oudar, and J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the subpicosecond time scale in the 1–1.6μm spectral range,” Appl. Phys. Lett. 49, 761–763 (1986).
[CrossRef]

J. Appl. Phys. (3)

A. Gavrielides, P. Peterson, and D. Cardimona, “Diffractive imaging in three-wave interactions,” J. Appl. Phys. 62, 2640–2645 (1987).
[CrossRef]

J. E. Midwinter and J. Warner, “Up-conversion of near infrared to visible radiation in lithium-meta-niobate,” J. Appl. Phys. 38, 519–523 (1967).
[CrossRef]

P. A. Laferriere, C. J. Wetterer, L. P. Schelonka, and M. A. Kramer, “Spatial-frequency selection using down-conversion optical parametric amplification,” J. Appl. Phys. 65, 3347–3350 (1989).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nonlinear Opt. (1)

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–37 (1995).

Opt. Commun. (4)

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114, 295–300 (1995).
[CrossRef]

F. Devaux and E. Lantz, “Ultrahigh-speed imaging by parametric amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

J. T. Lin, J. L. Montgomery, and K. Kato, “Temperature-tuned noncritically phase-matched frequency conversion in LBO crystal,” Opt. Commun. 80, 159–165 (1990).
[CrossRef]

E. Lantz, L. Han, A. Lacourt, and J. Zyss, “Simultaneous angle and wavelength one-beam noncritical phase matching in optical parametric amplification,” Opt. Commun. 97, 245–249 (1993).
[CrossRef]

Opt. Eng. (1)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Phys. Lett. A (1)

M. I. Kolobov and I. V. Sokolov, “Squeezed states of light and noise-free optical images,” Phys. Lett. A 140, 101–104 (1989).
[CrossRef]

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[CrossRef]

Other (6)

M. I. Kolobov and L. A. Lugiato, University of Milan, Milan, Italy, personal communication, 1995).

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wave mixing,” in Laser Resonators and Coherent Optics: Modeling, Technology and Applications, A. Bhowmik, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1868, 135–142 (1993).
[CrossRef]

D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS, Mclean, Va., 1990), 808–815.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chap. 17, p. 407.

J. T. Lin, lecture for tutorial short course on advances and applications of new nonlinear crystals, presented at the Society of Photo-Optical Instrumentation Engineers Symposia on Aerospace Sensing, Orlando, Fla., 1989.

A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1989), Chap. 18, p. 466.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Φ and Θ give the direction of the wave vectors with respect to the crystal axes (X, Y, Z).

Fig. 2
Fig. 2

Noncollinear phase-matching scheme. The wave vectors of the image form a cone around the mean direction of the signal-wave vector ks, corresponding to the incident beam and the perfect phase-matching direction.

Fig. 3
Fig. 3

Collinear phase-matching scheme. The wave vectors ks of the image form a cone around the direction of the wave vector, corresponding to the incident beam and the perfect phase-matching direction. The idler formed during the amplification of a plane wave cannot be distinguished from the signal wave, corresponding to the opposite diffraction order.

Fig. 4
Fig. 4

Gain (in dB) versus the incidence angle of the signal Φs for two values of the relative phase of the signal with respect to the pump beam at the input of the crystal. For φs = −π/4, the FWHM is approximately 8 mrad.

Fig. 5
Fig. 5

Experimental setup for the parametric amplification of a monochromatic image in a LBO crystal. The signal and the pump, denoted s and p, are polarized parallel and perpendicular to the figure plane, respectively (see inset). Glan, Glan–Taylor polarizer.

Fig. 6
Fig. 6

(a), (b): A nonamplified image and its Fourier spectrum, respectively. (c)–(f): Two noncollinear configurations of the amplification. In the Fourier plane [(d), (f)], the idler and the signal spectra are distinct, whereas interference fringes result from their coherent superposition in the image plane [(c), (e)]. In (h) the spectra of the idler and the signal are superimposed. There are no fringes in the amplified image shown in (g). The mean intensity of the amplified image depends on the phase of the signal relative to the pump at the input of the crystal.

Fig. 7
Fig. 7

In (a), the nonamplified image, the lines 5.3 are resolved, whereas in (b), the amplified image, the lines 4.4 represent the limit of resolution. These data correspond to angular phase-matching ranges ΔΦs = ΔΦs = 10 mrad (i.e., 8 lines/mm in the crystal plane).

Fig. 8
Fig. 8

Effective gain on the signal Gs (in dB), in the (Φs, λs) plane for an incidence angle of the pump beam on the crystal of Φp = 11.35°. The widths (FWHM) of the plateau are 8 mrad in the Φs direction and 140 nm in the λs direction.

Fig. 9
Fig. 9

Experimental setup for parametric amplification of a polychromatic image in a LBO crystal. Spectro., spectroscope.

Fig. 10
Fig. 10

(a) Nonamplified and (b) amplified images at the 1138-nm wavelength. The image shown in (c) corresponds to the idler at the 999-nm wavelength, generated during amplification of the signal at 1138 nm.

Fig. 11
Fig. 11

Amplified random spatial spectra at different wavelengths (in nm): The amplification acts as a pure spatial low-pass filter at 1064 and 1025 nm. At 999 and 1138 nm, the spatial low frequencies are slightly less amplified than the higher spatial frequencies. These rings represent the edges of the plateau shown in Fig. 8, which is 140 nm wide in wavelength.

Fig. 12
Fig. 12

Spectra in the (Φs, λs) plane. (a): Nonamplified spectrum of the signal. (b), (c): Amplified spectrum of the signal and of the idler, respectively. The form of the gain on the idler is similar to the computation given in Fig. 8. The amplified spectrum of the signal is different because of the strong wavelength dependence of the responsivity of the silicon photodetector.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A s ( l ) exp ( i Δ k l / 2 ) = A s ( 0 ) [ cosh ( b l ) + i Δ k 2 b sinh ( b l ) ] + i g 2 b A i * ( 0 ) sinh ( b l ) , A i * ( l ) exp ( - i Δ k l / 2 ) = A i * ( 0 ) [ cosh ( b l ) - i Δ k 2 b sinh ( b l ) ] + i g 2 b A s ( 0 ) sinh ( b l ) ,
g = [ ( μ 0 ɛ 0 ) ω s ω i n s n i ] 1 / 2 d eff E p             ( m - 1 ) , b = 1 2 g 2 - Δ k 2             ( m - 1 ) ,
I A s ( l ) + A i ( l ) 2 .
I noncol 1 + γ cos [ ( k s - k i ) · r + 2 φ s + ( π / 2 ) ] ,
γ = 2 cosh ( g l ) sinh ( g l ) cosh 2 ( g l ) + sinh 2 ( g l ) .
I col 1 + γ cos [ 2 φ s + ( π / 2 ) ] .
G = cosh 2 ( b l ) + ( Δ k 2 + g 2 4 b 2 ) sinh 2 ( b l ) - g b cosh ( b l ) sinh ( b l ) sin 2 φ s - Δ k g 2 b 2 sinh 2 ( b l ) cos 2 φ s             for Δ k g
G = cos 2 ( b l ) + ( Δ k 2 + g 2 4 b 2 ) sin 2 ( b l ) - g b cos ( b l ) sin ( b l ) sin 2 φ s - Δ k g 2 b 2 sin 2 ( b l ) cos 2 φ s             for Δ k > g , b = 1 2 Δ k 2 - g 2 .
Δ Θ s = 2 r v λ s γ n s ,
Δ k λ s = 2 π c ( n s λ s + n i λ i λ i λ s ) ,
n i λ i = n s λ s .
1 λ p = 1 λ i + 1 λ s d ( 1 λ p ) = 0 = - 1 λ s 2 d λ s + - 1 λ i 2 d λ i d λ i d λ s = - λ i 2 λ s 2 = - 1
Δ k λ s = 0.
G s ( Φ s , λ s ) = A s ( l ) 2 A s ( 0 ) 2 .

Metrics