Abstract

The performance of a high-power all-solid-state synchronously pumped optical parametric oscillator based on a Brewster-angled lithium triborate crystal is reported. The pump scheme includes a diode-pumped amplifier stage to boost the mean output power from an additive-pulse mode-locked Nd:YLF laser by a factor of 2. Improvements in the efficiency for an external resonant frequency doubler have produced a useful output power of 660 mW at 523.5 nm for pumping the optical parametric oscillator. Temperature-tuned noncritical phase matching of the lithium triborate crystal permitted generation of continuously tunable radiation over the range 0.65–2.7 μm with mean output powers for the signal (idler) as high as 210 mW (110 mW) in the standard X-fold resonator. The high intracavity power of the resonated signal wave introduced nonlinear chirping of the emitted pulses. With prisms to provide intracavity dispersion compensation, nearly transform-limited pulses of 1.63-ps duration were generated with mean output power of as much as 140 mW, i.e., peak powers of ~700 W.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Powers, R. J. Ellingson, W. S. Pelouch, and C. L. Tang, “Recent advances of the Ti:sapphire-pumped high-repetition-rate femtosecond optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2162–2167 (1993); see also associated literature in the same feature issue on synchronously pumped optical parametric oscillators.
    [CrossRef]
  2. J. Goodberlet, J. Jacobson, J. G. Fujimoto, P. A. Schulz, and T. Y. Fan, “Self-starting additive-pulse mode-locked diode-pumped Nd:YAG laser,” Opt. Lett. 15, 504–506 (1990).
    [CrossRef] [PubMed]
  3. M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
    [CrossRef]
  4. A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117–119 (1994).
    [CrossRef] [PubMed]
  5. M. J. McCarthy, S. D. Butterworth, and D. C. Hanna, “High-power widely-tunable picosecond pulses from an all-solid-state synchronously-pumped optical parametric oscillator,” Opt. Commun. 102, 297–303 (1993).
    [CrossRef]
  6. S. D. Butterworth, M. J. McCarthy, and D. C. Hanna, “Efficient operation of an all-solid-state synchronously-pumped lithium triborate optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 421–424.
  7. E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136–138 (1990).
    [CrossRef] [PubMed]
  8. J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
    [CrossRef]
  9. M. J. McCarthy and D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402–404 (1992).
    [CrossRef] [PubMed]
  10. M. J. McCarthy, “Investigation of an all solid state synchronously pumped optical parametric oscillator,” Ph.D. dissertation (University of Southampton, Southampton, UK, 1992).
  11. G. P. A. Malcolm, P. F. Curley, and A. I. Ferguson, “Additive-pulse mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 15, 1303–1305 (1990).
    [CrossRef] [PubMed]
  12. D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.
  13. J. R. Ryan and R. Beach, “Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride,” J. Opt. Soc. Am. B 9, 1883–1887 (1992).
    [CrossRef]
  14. W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Diode laser bar beam shaping technique,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFH6, pp. 410–411.
    [CrossRef]
  15. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
    [CrossRef]
  16. W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  17. M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
    [CrossRef]
  18. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 398–400.
  19. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  20. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1966).
    [CrossRef]
  21. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
    [CrossRef]
  22. S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
    [CrossRef]
  23. S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
    [CrossRef]
  24. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
    [CrossRef]
  25. J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270–1282 (1985).
    [CrossRef] [PubMed]
  26. G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assando, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
    [CrossRef] [PubMed]
  27. Q. Fu, G. Mak, and H. M. Van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006–1008 (1992).
    [CrossRef] [PubMed]
  28. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
    [CrossRef] [PubMed]
  29. E. W. Van Stryland and A. Dogariu, Center for Research and Education in Optics and Lasers, Orlando, Fla. 32826 (personal communication, 1994).
  30. J. Chesnoy and L. Fini, “Stabilization of a femtosecond dye laser synchronously pumped by a frequency-doubled mode-locked YAG laser,” Opt. Lett. 11, 635–637 (1986).
    [CrossRef] [PubMed]
  31. S. D. Butterworth, S. Girard, and D. C. Hanna, “A simple technique for active cavity-length stabilisation for a synchronously pumped optical parametric oscillator,” Opt. Commun. (to be published).
  32. R. L. Fork, C. H. Brito-Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  33. Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in a mode-locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993–2995 (1993).
    [CrossRef]
  34. Optical glass, Schott Glass Technologies, Inc. catalog.
  35. J. R. Lincoln, I. M. Botheroyd, and A. I. Ferguson, “Self mode-locking of Nd doped gain media in a simple X-fold cavity,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD1.7, pp. 13–14.

1994 (3)

A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117–119 (1994).
[CrossRef] [PubMed]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

1993 (5)

1992 (4)

1991 (2)

M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
[CrossRef]

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

1990 (4)

1988 (1)

W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982 (1)

S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

1966 (2)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1966).
[CrossRef]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
[CrossRef]

Assando, G.

Barr, J. R. M.

D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.

Beach, R.

Becker, P. C.

Botheroyd, I. M.

J. R. Lincoln, I. M. Botheroyd, and A. I. Ferguson, “Self mode-locking of Nd doped gain media in a simple X-fold cavity,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD1.7, pp. 13–14.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1966).
[CrossRef]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
[CrossRef]

Brito-Cruz, C. H.

Butterworth, S. D.

M. J. McCarthy, S. D. Butterworth, and D. C. Hanna, “High-power widely-tunable picosecond pulses from an all-solid-state synchronously-pumped optical parametric oscillator,” Opt. Commun. 102, 297–303 (1993).
[CrossRef]

S. D. Butterworth, M. J. McCarthy, and D. C. Hanna, “Efficient operation of an all-solid-state synchronously-pumped lithium triborate optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 421–424.

S. D. Butterworth, S. Girard, and D. C. Hanna, “A simple technique for active cavity-length stabilisation for a synchronously pumped optical parametric oscillator,” Opt. Commun. (to be published).

Byer, R. L.

W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Chen, C.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Chesnoy, J.

Clarkson, W. A.

W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Diode laser bar beam shaping technique,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFH6, pp. 410–411.
[CrossRef]

Curley, P. F.

Diels, J. C.

Dogariu, A.

E. W. Van Stryland and A. Dogariu, Center for Research and Education in Optics and Lasers, Orlando, Fla. 32826 (personal communication, 1994).

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dudley, J. M.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
[CrossRef]

Ebrahimzadeh, M.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

Edelstein, D. C.

Ellingson, R. J.

Falk, J.

S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Fan, T. Y.

Ferguson, A. I.

A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117–119 (1994).
[CrossRef] [PubMed]

G. P. A. Malcolm, P. F. Curley, and A. I. Ferguson, “Additive-pulse mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 15, 1303–1305 (1990).
[CrossRef] [PubMed]

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
[CrossRef]

J. R. Lincoln, I. M. Botheroyd, and A. I. Ferguson, “Self mode-locking of Nd doped gain media in a simple X-fold cavity,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD1.7, pp. 13–14.

Fini, L.

Fontaine, J. J.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fork, R. L.

Fu, Q.

Fujimoto, J. G.

Girard, S.

S. D. Butterworth, S. Girard, and D. C. Hanna, “A simple technique for active cavity-length stabilisation for a synchronously pumped optical parametric oscillator,” Opt. Commun. (to be published).

Goodberlet, J.

Guha, S.

S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hanna, D. C.

M. J. McCarthy, S. D. Butterworth, and D. C. Hanna, “High-power widely-tunable picosecond pulses from an all-solid-state synchronously-pumped optical parametric oscillator,” Opt. Commun. 102, 297–303 (1993).
[CrossRef]

M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
[CrossRef]

M. J. McCarthy and D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402–404 (1992).
[CrossRef] [PubMed]

M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
[CrossRef]

S. D. Butterworth, M. J. McCarthy, and D. C. Hanna, “Efficient operation of an all-solid-state synchronously-pumped lithium triborate optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 421–424.

W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Diode laser bar beam shaping technique,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFH6, pp. 410–411.
[CrossRef]

D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.

S. D. Butterworth, S. Girard, and D. C. Hanna, “A simple technique for active cavity-length stabilisation for a synchronously pumped optical parametric oscillator,” Opt. Commun. (to be published).

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hughes, D. W.

D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.

Jacobson, J.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1966).
[CrossRef]

Koslovsky, W. J.

W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lin, S.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Lincoln, J. R.

J. R. Lincoln, I. M. Botheroyd, and A. I. Ferguson, “Self mode-locking of Nd doped gain media in a simple X-fold cavity,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD1.7, pp. 13–14.

Majdabadi, A. A.

D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.

Mak, G.

Maker, G. T.

M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
[CrossRef]

Malcolm, G. P. A.

McCarthy, M. J.

M. J. McCarthy, S. D. Butterworth, and D. C. Hanna, “High-power widely-tunable picosecond pulses from an all-solid-state synchronously-pumped optical parametric oscillator,” Opt. Commun. 102, 297–303 (1993).
[CrossRef]

M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
[CrossRef]

M. J. McCarthy and D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402–404 (1992).
[CrossRef] [PubMed]

M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
[CrossRef]

S. D. Butterworth, M. J. McCarthy, and D. C. Hanna, “Efficient operation of an all-solid-state synchronously-pumped lithium triborate optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 421–424.

M. J. McCarthy, “Investigation of an all solid state synchronously pumped optical parametric oscillator,” Ph.D. dissertation (University of Southampton, Southampton, UK, 1992).

McMichael, I. C.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nabors, C. D.

W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Neilson, A. B.

W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Diode laser bar beam shaping technique,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFH6, pp. 410–411.
[CrossRef]

Pelouch, W. S.

Persaud, M. A.

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
[CrossRef]

Powers, P. E.

Reid, D. T.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

Robertson, A.

Ryan, J. R.

Schulz, P. A.

Shank, C. V.

Sheik-Bahae, M.

Sibbett, W.

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

Simoni, F.

Stegeman, G. I.

Tang, C. L.

Tolchard, J. M.

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
[CrossRef]

Van Driel, H. M.

Van Stryland, E. W.

G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assando, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[CrossRef] [PubMed]

E. W. Van Stryland and A. Dogariu, Center for Research and Education in Optics and Lasers, Orlando, Fla. 32826 (personal communication, 1994).

Wachman, E. S.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Wu, B.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Wu, F.

S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

Xie, F.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Yagi, T.

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in a mode-locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993–2995 (1993).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 398–400.

Zhang, Z.

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in a mode-locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993–2995 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in a mode-locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993–2995 (1993).
[CrossRef]

IEEE J. Quantum Electron. (5)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

S. Guha, F. Wu, and J. Falk, “The effects of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907–912 (1982).
[CrossRef]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
[CrossRef]

W. J. Koslovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3external resonant cavity,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1966).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

M. J. McCarthy, G. T. Maker, and D. C. Hanna, “Efficient frequency doubling of a self-starting additive-pulse mode-locked diode pumped Nd:YAG laser,” Opt. Commun. 82, 327–332 (1991).
[CrossRef]

M. J. McCarthy, S. D. Butterworth, and D. C. Hanna, “High-power widely-tunable picosecond pulses from an all-solid-state synchronously-pumped optical parametric oscillator,” Opt. Commun. 102, 297–303 (1993).
[CrossRef]

J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Characteristics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator,” Opt. Commun. 104, 419–430 (1994).
[CrossRef]

Opt. Lett. (10)

M. J. McCarthy and D. C. Hanna, “Continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a laser-diode-pumped Nd:YLF laser,” Opt. Lett. 17, 402–404 (1992).
[CrossRef] [PubMed]

A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117–119 (1994).
[CrossRef] [PubMed]

J. Goodberlet, J. Jacobson, J. G. Fujimoto, P. A. Schulz, and T. Y. Fan, “Self-starting additive-pulse mode-locked diode-pumped Nd:YAG laser,” Opt. Lett. 15, 504–506 (1990).
[CrossRef] [PubMed]

G. P. A. Malcolm, P. F. Curley, and A. I. Ferguson, “Additive-pulse mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 15, 1303–1305 (1990).
[CrossRef] [PubMed]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136–138 (1990).
[CrossRef] [PubMed]

G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assando, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[CrossRef] [PubMed]

Q. Fu, G. Mak, and H. M. Van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006–1008 (1992).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
[CrossRef] [PubMed]

J. Chesnoy and L. Fini, “Stabilization of a femtosecond dye laser synchronously pumped by a frequency-doubled mode-locked YAG laser,” Opt. Lett. 11, 635–637 (1986).
[CrossRef] [PubMed]

R. L. Fork, C. H. Brito-Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

Other (9)

Optical glass, Schott Glass Technologies, Inc. catalog.

J. R. Lincoln, I. M. Botheroyd, and A. I. Ferguson, “Self mode-locking of Nd doped gain media in a simple X-fold cavity,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD1.7, pp. 13–14.

S. D. Butterworth, S. Girard, and D. C. Hanna, “A simple technique for active cavity-length stabilisation for a synchronously pumped optical parametric oscillator,” Opt. Commun. (to be published).

E. W. Van Stryland and A. Dogariu, Center for Research and Education in Optics and Lasers, Orlando, Fla. 32826 (personal communication, 1994).

D. W. Hughes, A. A. Majdabadi, J. R. M. Barr, and D. C. Hanna, “Sub-picosecond pulse generation from a laser-diode-pumped, self-starting additive-pulse mode-locked Nd:LMA laser,” in Advanced Solid-State Lasers, Vol. 15 of 1993 OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington, D.C., 1993), pp. 233–237.

W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Diode laser bar beam shaping technique,” in Conference on Lasers and Electro-Optics Europe, 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFH6, pp. 410–411.
[CrossRef]

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 398–400.

M. J. McCarthy, “Investigation of an all solid state synchronously pumped optical parametric oscillator,” Ph.D. dissertation (University of Southampton, Southampton, UK, 1992).

S. D. Butterworth, M. J. McCarthy, and D. C. Hanna, “Efficient operation of an all-solid-state synchronously-pumped lithium triborate optical parametric oscillator,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 421–424.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of longitudinally diode-pumped Nd:YLF amplifier. HR, highly reflecting mirror; PBC, polarizing beam-splitter cube; HWP, half-wave plate.

Fig. 2
Fig. 2

Output power versus diode-pump power of the Nd:YLF amplifier.

Fig. 3
Fig. 3

Second-harmonic output power at 523.5 nm versus input coupler reflectivity. Circles, data points; solid curves, normalized data; dotted curve, theoretical output.

Fig. 4
Fig. 4

Interferometric autocorrelation trace of frequency-doubled pulses.

Fig. 5
Fig. 5

Cavity configurations for the OPO: with and without intracavity dispersion compensation. PSD, position-sensitive detector; HV, high voltage; PZT, piezoelectric transducer; BS, beam splitter; FL, focal length; o/c, output coupler.

Fig. 6
Fig. 6

Output power of the OPO across the tuning range with three different mirror sets: (a) signal, (b) idler. The top traces were obtained with a Nd:YLF amplifier and a fully optimized resonant frequency doubler. The bottom traces were obtained without the amplifier.

Fig. 7
Fig. 7

Wavelength versus temperature tuning for the OPO. Circles, data points; solid line, with the Sellmeier equations of Lin et al.23; dotted line, with the Sellmeier equations for Kato.24

Fig. 8
Fig. 8

(a) Intensity autocorrelation traces and (b) corresponding power spectrum at different levels of circulating signal power without intracavity GVD compensation. (c) Interferometric autocorrelation trace. The traces shown in (a) and (b) were offset for clarity.

Fig. 9
Fig. 9

Variation of the average signal output power with relative cavity-length detuning.

Fig. 10
Fig. 10

(a) Intensity autocorrelation trace and (b) corresponding power spectrum with intracavity prism pair. (c) Interferometric autocorrelation at maximum circulating power with 4 mm of SF10 glass.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

t SH = ( 1 - η SH ) ,
η SH = tanh 2 [ ( γ SH P C ) 1 / 2 ] .
P SH = γ SH P C 2 ,
P SH ( t ) = γ SH P C 2 ( t ) .
P ¯ SH = γ SH [ ( 2 ln 2 π ) 1 / 2 ] 1 τ p f P ¯ C 2 ,
γ SH = γ SH [ ( 2 ln 2 π ) 1 / 2 ] 1 τ p f .
P ¯ C P ¯ I = ( 1 - r 1 ) { 1 - [ ( r 1 ) ( T { 1 - tanh 2 [ ( γ SH P ¯ C ) 1 / 2 ] } ) 1 / 2 ] } 2 ,
P ¯ SH = η SH P ¯ C = P ¯ C tanh 2 [ ( γ SH P ¯ C ) 1 / 2 ] .
γ SH = 2 ω 2 d eff 2 k ω π n 3 ɛ 0 c 3 l c h ( B , ξ ) ,
ϕ SPM = 2 π n 2 l C I P λ S 2 N ,
D 2 P = d 2 ϕ P d ω 2 = λ 3 2 π c 2 d 2 P d λ 2 ,
d 2 P d λ 2 = 4 [ d 2 n d λ 2 + ( 2 n - 1 n 3 ) ( d n d λ ) 2 ] d tan α 2 - 8 ( d n d λ ) 2 ( l + d tan α 2 tan 2 ) ,
D 2 C = d 2 ϕ C d ω 2 = λ 3 l C 2 π c 2 d 2 n d λ 2

Metrics