Abstract

Damage thresholds at 2 μm exceeding 10 J/cm2 were measured in ZnGeP2 witness samples representing a range of growth runs and surface treatments. Samples grown more recently were more robust, but clear correlations between damage properties and surface quality, coating type, or incident polarization were not observed. Variation in damage threshold both within individual samples and between samples was quite large. Comparison with uncoated diffusion-bonded and single-wafer GaAs shows that uncoated ZnGeP2 damages at slightly lower energy density than does GaAs (approximately 4 J/cm2 versus 5.5 J/cm2, respectively).

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  2. P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.
  3. Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
    [CrossRef]
  4. P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
    [CrossRef]
  5. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
    [CrossRef]
  6. B. C. Ziegler and K. L. Schepler, “Transmission and damage threshold measurements in AgGaSe2at 2.1 μ m,” Appl. Opt. 30, 5077–5080 (1991).
    [CrossRef] [PubMed]
  7. K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
    [CrossRef]
  8. J. E. Tucker, C. L. Marquardt, S. R. Bowman, and B. J. Feldman, “Transient thermal lens in ZnGeP2crystal,” Appl. Opt. 34, 2678–2682 (1995).
    [CrossRef] [PubMed]

1995 (1)

1994 (1)

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

1993 (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

1991 (1)

1987 (1)

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

1984 (1)

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

1971 (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Andreev, Yu. M.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Bowman, S. R.

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Budni, P. A.

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Byer, R. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Chicklis, E. P.

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Eckardt, R. C.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Feigelson, R. S.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Fejer, M. M.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Feldman, B. J.

Gordon, L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Gorton, E. K.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Gribenyukov, A. I.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Ippolitov, I. I.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Jackson, D. J.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Khmel’nitskii, G. S.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Knights, M. G.

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Kulevskii, L. A.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Marquardt, C. L.

Mason, P. D.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Morozov, A. N.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Pollak, T. M.

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Route, R. R.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Schepler, K. L.

Schunemann, P. G.

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Sosnin, A. V.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Tucker, J. E.

Vodopyanov, K. L.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Voevodin, V. G.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Woods, G. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Ziegler, B. C.

Zyryanov, O. Ya.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Electron. Lett. (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993).
[CrossRef]

Opt. Commun. (1)

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Sov. J. Quantum Electron. (2)

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2crystal in the 5–6.3μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Other (1)

P. A. Budni, P. G. Schunemann, M. G. Knights, T. M. Pollak, and E. P. Chicklis, “Efficient, high average power optical parametric oscillation using ZnGeP2,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 380–383.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Temporal profiles of pulse formats used to verify the relationship between pulse width and damage threshold. FWHM pulse widths are (a) 70 ns, (b) 200 ns, (c) 250 μs.

Fig. 3
Fig. 3

Average damage thresholds in ZnGeP2 witness samples. The error bars indicate minimum and maximum values in each data set. o, Ordinary; e extraordinary.

Fig. 4
Fig. 4

Distribution of damage thresholds (both polarizations); uncoated samples 47W1 and 47W2 were excluded.

Tables (2)

Tables Icon

Table 1 ZnGeP2 Witness Samples

Tables Icon

Table 2 ZnGeP2 Absorption and Surface-Quality Data

Metrics