Abstract

We have studied doubly resonant parametric oscillation in the regime of maximum conversion efficiency. A monolithic MgO:LiNbO3 resonator with a threshold of 28 mW, pumped by a frequency-doubled Nd:YAG laser, was employed. With an active frequency-stabilization scheme, single-mode operation without mode hops at 105 mW combined signal and idler output power was achieved at a pump power four times above threshold, with a conversion efficiency of 81%. Excellent agreement between theory and experiment was found for the dependence of efficiency and depletion on pump power. The efficiency and the nearly complete pump depletion of 94% were limited only by imperfect mode matching of the pump wave and by the small cavity losses.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% Efficiency for cw frequency doubling from 1.08 to 0.54 μm," Opt. Lett. 17, 640–642 (1992).
    [CrossRef] [PubMed]
  2. R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, and J. Mynlek, "82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325–1327 (1994); erratum, Opt. Lett. 20, 345 (1995).
    [CrossRef] [PubMed]
  3. E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. 55, 279–290 (1992).
    [CrossRef]
  4. A. E. Siegman, "Nonlinear optical effects: an optical power limiter," Appl. Opt. 1, 739–744 (1962).
    [CrossRef]
  5. J. E. Bjorkholm, "Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections," IEEE J. Quantum Electron. QE-5, 293–295 (1969); J. E. Bjorkholm, A. Ashkin, and R. G. Smith, "Improvement of optical parametric oscillators by nonresonant pump reflection," IEEE J. Quantum Electron. QE-6, 797–799 (1970).
    [CrossRef]
  6. C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, and R. L. Byer, "Efficient, single-axial-mode operation of a monolithic MgO:LiNbO3 optical parametric oscillator," Opt. Lett. 14, 1134–1136 (1989).
    [CrossRef] [PubMed]
  7. R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).
  8. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12.5.
  9. L.-A. Wu and H. J. Kimble, "Interference effects in second-harmonic generation within an optical cavity," J. Opt. Soc. Am. B 2, 697–703 (1985).
    [CrossRef]
  10. T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, "Type-II continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics," J. Opt. Soc. Am. B 10, 1668–1680 (1993).
    [CrossRef]
  11. W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).
  12. L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
    [CrossRef]
  13. R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
    [CrossRef] [PubMed]
  14. S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).
  15. S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
    [CrossRef]
  16. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  17. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, "Optical parametric oscillator frequency tuning and control," J. Opt. Soc. Am. B 8, 646–676 (1991). In Eq. (A1), read A3 + B2F instead of A3 − B2F.
    [CrossRef]
  18. S. Schiller and R. L. Byer, "Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator," J. Opt. Soc. Am. B 10, 1696–707 (1993).
    [CrossRef]
  19. W. J. Kozlovsky, C. D. Nabors, R C. Eckardt, and R. L. Byer, "Monolithic MgO:LiNbO3 doubly resonant optical parametric oscillator pumped by a frequency-doubled diode-laserpumped Nd:YAG laser," Opt. Lett. 14, 66–68 (1989).
    [CrossRef] [PubMed]
  20. D. C. Gerstenberger and R. W. Wallace, "Continuous-wave operation of a doubly resonant lithium niobate optical parametric oscillator system tunable from 966 to 1185 nm," J. Opt. Soc. Am. B 10, 1681–1683 (1993).
    [CrossRef]
  21. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  22. D. Lee and N. C. Wong, "Stabilization and tuning of a doubly resonant optical parametric oscillator," J. Opt. Soc. Am. B 10, 1659–1667 (1993).
    [CrossRef]
  23. F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
    [CrossRef]
  24. M. J. Collett and D. F. Walls, "Squeezing spectra for nonlinear optical systems," Phys. Rev. A 32, 2887–2892 (1985).
    [CrossRef] [PubMed]
  25. G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
    [CrossRef]
  26. C. D. Nabors and R. M. Shelby, "Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric amplifier," Phys. Rev. A 42, 556–559 (1990).
    [CrossRef] [PubMed]
  27. A. J. Henderson, M. J. Padgett, J. Zhang, W. Sibbett, and M. H. Dunn, "Continuous frequency tuning of a cw optical parametric oscillator through tuning of its pump source," Opt. Lett. 20, 1029–1031 (1995).
    [CrossRef] [PubMed]

1995 (5)

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[CrossRef]

A. J. Henderson, M. J. Padgett, J. Zhang, W. Sibbett, and M. H. Dunn, "Continuous frequency tuning of a cw optical parametric oscillator through tuning of its pump source," Opt. Lett. 20, 1029–1031 (1995).
[CrossRef] [PubMed]

1994 (3)

R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, and J. Mynlek, "82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325–1327 (1994); erratum, Opt. Lett. 20, 345 (1995).
[CrossRef] [PubMed]

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

1993 (4)

1992 (2)

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. 55, 279–290 (1992).
[CrossRef]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% Efficiency for cw frequency doubling from 1.08 to 0.54 μm," Opt. Lett. 17, 640–642 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

C. D. Nabors and R. M. Shelby, "Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric amplifier," Phys. Rev. A 42, 556–559 (1990).
[CrossRef] [PubMed]

1989 (2)

1988 (1)

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

1985 (2)

L.-A. Wu and H. J. Kimble, "Interference effects in second-harmonic generation within an optical cavity," J. Opt. Soc. Am. B 2, 697–703 (1985).
[CrossRef]

M. J. Collett and D. F. Walls, "Squeezing spectra for nonlinear optical systems," Phys. Rev. A 32, 2887–2892 (1985).
[CrossRef] [PubMed]

1983 (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

1971 (1)

W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).

1969 (1)

J. E. Bjorkholm, "Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections," IEEE J. Quantum Electron. QE-5, 293–295 (1969); J. E. Bjorkholm, A. Ashkin, and R. G. Smith, "Improvement of optical parametric oscillators by nonresonant pump reflection," IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1962 (1)

Bachor, H.-A.

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

Bandilla, A.

W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).

Bjorkholm, J. E.

J. E. Bjorkholm, "Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections," IEEE J. Quantum Electron. QE-5, 293–295 (1969); J. E. Bjorkholm, A. Ashkin, and R. G. Smith, "Improvement of optical parametric oscillators by nonresonant pump reflection," IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Breitenbach, G.

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[CrossRef]

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

Bruckmeier, R.

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

Brunner, W.

W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).

Byer, R. L.

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. 55, 279–290 (1992).
[CrossRef]

Collett, M. J.

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

M. J. Collett and D. F. Walls, "Squeezing spectra for nonlinear optical systems," Phys. Rev. A 32, 2887–2892 (1985).
[CrossRef] [PubMed]

Colville, F. G.

F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

Debuisschert, T.

Drever, R.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Dunn, D. H.

F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

Dunn, M. H.

Eckardt, R C.

Eckardt, R. C.

Fabre, C.

T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, "Type-II continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics," J. Opt. Soc. Am. B 10, 1668–1680 (1993).
[CrossRef]

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Fiedler, K.

Ford, G.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gerstenberger, D. C.

Giacobino, E.

T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, "Type-II continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics," J. Opt. Soc. Am. B 10, 1668–1680 (1993).
[CrossRef]

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Hall, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Henderson, A. J.

Henking, R.

Horowicz, R. J.

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Hough, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kohler, S.

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

Kowalski, F.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kozlovsky, W. J.

Kürz, P.

Lee, D.

Lugiato, L. A.

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Mlynek, J.

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[CrossRef]

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

Müller, T.

Munley, A.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Mynlek, J.

Nabors, C. D.

Oldano, C.

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Ou, Z. Y.

Padgett, M. J.

A. J. Henderson, M. J. Padgett, J. Zhang, W. Sibbett, and M. H. Dunn, "Continuous frequency tuning of a cw optical parametric oscillator through tuning of its pump source," Opt. Lett. 20, 1029–1031 (1995).
[CrossRef] [PubMed]

F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

Paschotta, R.

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, and J. Mynlek, "82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325–1327 (1994); erratum, Opt. Lett. 20, 345 (1995).
[CrossRef] [PubMed]

Paul, H.

W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).

Pereira, S. F.

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[CrossRef]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% Efficiency for cw frequency doubling from 1.08 to 0.54 μm," Opt. Lett. 17, 640–642 (1992).
[CrossRef] [PubMed]

Poizat, J.-Ph.

Polzik, E. S.

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% Efficiency for cw frequency doubling from 1.08 to 0.54 μm," Opt. Lett. 17, 640–642 (1992).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. 55, 279–290 (1992).
[CrossRef]

Schiller, S.

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, "Squeezed vacuum from a monolithic optical parametric oscillator," J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[CrossRef]

R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, and J. Mynlek, "82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325–1327 (1994); erratum, Opt. Lett. 20, 345 (1995).
[CrossRef] [PubMed]

S. Schiller and R. L. Byer, "Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator," J. Opt. Soc. Am. B 10, 1696–707 (1993).
[CrossRef]

Shelby, R. M.

C. D. Nabors and R. M. Shelby, "Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric amplifier," Phys. Rev. A 42, 556–559 (1990).
[CrossRef] [PubMed]

Sibbett, W.

Siegman, A. E.

Sizmann, A.

Wallace, R. W.

Walls, D. F.

M. J. Collett and D. F. Walls, "Squeezing spectra for nonlinear optical systems," Phys. Rev. A 32, 2887–2892 (1985).
[CrossRef] [PubMed]

Ward, H.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

White, A. G.

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

Wong, N. C.

Wu, L.-A.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12.5.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12.5.

Zhang, J.

Ann. Phys. (1)

W. Brunner, H. Paul, and A. Bandilla, "Fluktuationen beim optischen parametrischen Oszillator," Ann. Phys. (Leipzig) 27, 82–90 (1971).

Appl. Opt. (1)

Appl. Phys. (1)

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. 55, 279–290 (1992).
[CrossRef]

Appl. Phys. B (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. B. (1)

S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, "Squeezing and quantum nondemolition measurements with an optical parametric amplifier," Appl. Phys. B. 60, S77–S88 (1995).

Appl. Phys. Lett. (1)

F. G. Colville, M. J. Padgett, and D. H. Dunn, "Continuouswave, dual-cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Bjorkholm, "Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections," IEEE J. Quantum Electron. QE-5, 293–295 (1969); J. E. Bjorkholm, A. Ashkin, and R. G. Smith, "Improvement of optical parametric oscillators by nonresonant pump reflection," IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focussed Gaussian light beams," J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (7)

Nuovo Cimento D (1)

L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, "Bistability, self-pulsing and chaos in optical parametric oscillators," Nuovo Cimento D 10, 959–977 (1988).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (2)

C. D. Nabors and R. M. Shelby, "Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric amplifier," Phys. Rev. A 42, 556–559 (1990).
[CrossRef] [PubMed]

M. J. Collett and D. F. Walls, "Squeezing spectra for nonlinear optical systems," Phys. Rev. A 32, 2887–2892 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Paschotta, M. J. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807–3810 (1994).
[CrossRef] [PubMed]

Other (3)

S. Schiller, G. Breitenbach, S. F. Pereira, R. Paschotta, A. G. White, and J. Mlynek, "Generation of continuous-wave bright squeezed light," in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2378, 91–98 (1995). The phase-matching coefficient K, denoted by B in this reference, can have an arbitrary phase.
[CrossRef]

R. Bruckmeier, A. G. White, S. Schiller, and J. Mlynek, Fakultät für Physik, Universität Konstanz, D-78434 Konstanz, Germany (personal communication, 1995).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. The SHG and the optical parametric oscillator (OPO) LiNbO3 crystals are both temperature stabilized at the phase-matching temperature (near 110°C). For simplicity, the circuits for electro-optic modulation of the crystal resonators used for the frequency stabilization of the OPO output and of the doubler cavity length are omitted. D1–D4 are photodetectors.

Fig. 2
Fig. 2

High-efficiency parametric generation in pulsed operation. Solid curve, input 532-nm pump pulse incident upon the DRO. Dotted curve, depleted output pump pulse. Dashed curve, signal + idler output pulse. The upturn of the reflected pump pulse at the middle of the trace indicates that the DRO is driven beyond the point of maximum depletion.

Fig. 3
Fig. 3

(a) Output pump and combined signal and idler power as a function of pump power, (b) conversion efficiency and depletion as a function of normalized pump power. Maximum conversion efficiency of 84% and maximum pump depletion (95%) are reached at four times above threshold. The data are from Fig. 2. The solid curves are theoretical fits explained in the text.

Fig. 4
Fig. 4

Output wavelengths of the DRO as a function of (a) the pump frequency, (b) the crystal temperature.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

α ¯ ˙ i / s = - ( γ + i Δ i / s ) α ¯ i / s + ν K * α p , in α ¯ s / i * - ν D α ¯ s / i 2 α ¯ i / s .
α p , out = α p , in - 2 ν K α ¯ i α ¯ s ,
α i / s , out = 2 γ c α ¯ i / s .
P i / s / p , in / out = π 4 0 μ 0 ω i / s / p w i / s / p 2 α i / s / p , in / out 2 ,
K NF = sinc ( Δ k L m / 2 ) , D NF = - 2 i Δ k L m [ 1 - exp ( - i Δ k L m / 2 ) sinc ( Δ k L m / 2 ) ] .
α p , in 2 = α p , out 2 + α i , out 2 + α s , out 2 + 2 ( γ - γ c ) ( α ¯ i 2 + α ¯ s 2 ) + d ( α ¯ i 2 + α ¯ s 2 ) / d t ,
Re D = K 2 .
Δ i / s NL = ν α ¯ s / i 2 Im D .
η = P i , out + P s , out P p , in ,             d = P p , out P p , in .
Δ i / s opt = - ν α ¯ s / i max 2 Im D .
α ¯ s max 2 = α ¯ i max 2 = ν K α p , in - γ ν Re D .
η = 4 T A + T ( P th P p , in - P th P p , in ) ,
d = ( 2 P th P p , in - 1 ) 2 ,
P th = π 4 0 μ 0 ω p w p 2 γ 2 ν K 2
Γ SFG = P 2 P i , circ P s , circ = 16 π μ 0 0 τ 2 ω p w p 2 ν K 2 .
P th = ( T + A ) 2 4 Γ SHG ,
Γ SHG = μ 0 n κ 2 π L m ( L m 2 z r K 2 ) ,
Δ k ( ν p , ν s , T ) = Δ k ν p Δ ν p + 1 2 2 Δ k ν s 2 Δ ν s 2 + Δ k T Δ T .
Δ k = [ 3.4 Δ ν p / GHz - 8.7 × 10 5 ( Δ ν s / ν 0 ) 2 + 749 Δ T / K ] m - 1 .
δ ν s ( c ) ν s = - 1 2 ( δ L L + A δ T ) ( B + C Δ ν s ) - 1 , δ ν p 2 ν 0 = - 1 2 ( δ L L + A δ T ) B ( B 2 - C 2 Δ ν s 2 ) - 1 .
A = [ 1 n 1 d n 1 ( ν 0 , T ) d T + α T ] ,
B = 1 2 [ ν 0 n 1 d n 1 ( ν s , T 0 ) d ν s + 1 ] ,
C = 1 n 1 [ d n 1 ( ν s , T 0 ) d ν s + ν 0 2 d 2 n 1 ( ν s , T 0 ) d ν s 2 ] .
δ ν s / i = δ ν p / 2 = - [ 2.7 × 10 5 ( δ L / L ) + 5.3 δ T / K ] GHz .

Metrics