Abstract

In lithium niobate crystals the focused beam of an argon-ion laser induces birefringence changes. We investigate the intensity dependences of the saturation value of these birefringence changes, the photoconductivity, and the photorefractive sensitivity in nominally pure crystals with different lithium contents and in an iron-doped sample. All experimental results can be described assuming Fe2+/3+ centers—of low concentration in the nominally pure samples—and, in addition, intrinsic NbLi polarons as a second photoactive center.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1988, 1989), Vols. I and II.
    [CrossRef]
  2. S. C. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallog. B 42, 61 (1986).
    [CrossRef]
  3. D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
    [CrossRef]
  4. O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
    [CrossRef]
  5. H. Kurz and D. von der Linde, "Nonlinear optical excitation of photovoltaic LiNbO3," Ferroelectrics 21, 621 (1978).
    [CrossRef]
  6. F. Jermann and J. Otten, "Light-induced charge transport in LiNbO3:Fe at high light intensities," J. Opt. Soc. Am. B 10, 2085 (1993).
    [CrossRef]
  7. M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
    [CrossRef]
  8. F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
    [CrossRef]
  9. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
    [CrossRef]
  10. D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
    [CrossRef]
  11. F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
    [CrossRef]
  12. B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
    [CrossRef]
  13. O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

1994 (2)

M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
[CrossRef]

B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
[CrossRef]

1993 (2)

F. Jermann and J. Otten, "Light-induced charge transport in LiNbO3:Fe at high light intensities," J. Opt. Soc. Am. B 10, 2085 (1993).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

1992 (1)

F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
[CrossRef]

1991 (1)

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

1987 (1)

O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

1986 (1)

S. C. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallog. B 42, 61 (1986).
[CrossRef]

1978 (2)

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

H. Kurz and D. von der Linde, "Nonlinear optical excitation of photovoltaic LiNbO3," Ferroelectrics 21, 621 (1978).
[CrossRef]

1969 (1)

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallog. B 42, 61 (1986).
[CrossRef]

Althoff, O.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

Betzler, K.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Chen, F. S.

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

Erdmann, A.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

Faust, B.

B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Gallagher, J. G.

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

Gather, B.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Hertel, P.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

Jermann, F.

M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
[CrossRef]

F. Jermann and J. Otten, "Light-induced charge transport in LiNbO3:Fe at high light intensities," J. Opt. Soc. Am. B 10, 2085 (1993).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
[CrossRef]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Juppe, S.

O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

Kim, D. M.

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

Klauer, S.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Koppitz, J.

O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

Krätzig, E.

M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
[CrossRef]

F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
[CrossRef]

Kurz, H.

H. Kurz and D. von der Linde, "Nonlinear optical excitation of photovoltaic LiNbO3," Ferroelectrics 21, 621 (1978).
[CrossRef]

Linde, D. von der

H. Kurz and D. von der Linde, "Nonlinear optical excitation of photovoltaic LiNbO3," Ferroelectrics 21, 621 (1978).
[CrossRef]

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Marsh, P.

S. C. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallog. B 42, 61 (1986).
[CrossRef]

Müller, H.

B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
[CrossRef]

Otten, J.

Rabson, T. A.

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

Schirmer, O. F.

B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

Schlarb, U.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Simon, M.

M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
[CrossRef]

Tittel, F. K.

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

Wiskott, L.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

Wöhlecke, M.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

Acta Crystallog. B (1)

S. C. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallog. B 42, 61 (1986).
[CrossRef]

Appl. Phys. (1)

D. M. Kim, J. G. Gallagher, Jr., T. A. Rabson, and F. K. Tittel, "Intensity-enhanced bulk photovoltaic effects in LiNbO3:Fe," Appl. Phys. 17, 413 (1978).
[CrossRef]

Appl. Phys. A (2)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1993).
[CrossRef]

F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
[CrossRef]

Cryst. Lattice Defects Amorph. Mater. (1)

O. F. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mater. 16, 353 (1987).

Ferroelectrics (2)

B. Faust, H. Müller, and O. F. Schirmer, "Free small polarons in LiNbO3," Ferroelectrics 153, 297 (1994).
[CrossRef]

H. Kurz and D. von der Linde, "Nonlinear optical excitation of photovoltaic LiNbO3," Ferroelectrics 21, 621 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Mater. (1)

M. Simon, F. Jermann, and E. Krätzig, "Light-induced absorption changes in iron-doped LiNbO3," Opt. Mater. 3, 243 (1994).
[CrossRef]

Phys. Status Solidi (1)

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi (a) 128, K41 (1991).
[CrossRef]

Other (1)

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1988, 1989), Vols. I and II.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Saturation values δΔnS of the light-induced birefringence change versus intensity I of pump light for congruent (squares) and stoichiometric (circles) LiNbO3. The curves are guides to the eye.

Fig. 2
Fig. 2

Photoconductivity σ0 as a function of pump intensity I. Assuming a law σ0Ix yields x = 0.95 ± 0.10 for congruent LiNbO3 (squares and dashed line) and x = 0.89 ± 0.09 for the stoichiometric sample (circles and solid line), respectively.

Fig. 3
Fig. 3

Photorefractive sensitivity δS versus pump intensity I. Within measuring accuracy the sensitivity remains constant for stoichiometric LiNbO3 (circles and solid line). In the case of the congruent sample (squares and dashed curve) δS increases for intensities up to ~2 MW/m2 and then tends to saturate.

Fig. 4
Fig. 4

Saturation values δΔnS of the light-induced brirefringence change in congruent LiNbO3 as a function of chopper frequency f at different pump intensities. At high frequencies all values are diminished to ~50% of the result at f = 0 Hz, independently of the intensity of pump light. The dashed curves are guides to the eye.

Fig. 5
Fig. 5

Saturation values δΔnS of the light-induced birefringence change versus intensity I of pump light for a congruent LiNbO3:Fe crystal (NFe = 70 × 1023 m−3, NFe2+/NFe3+ = 0.05). The dotted curve is a fit to these values by a two-center charge transport model.6

Fig. 6
Fig. 6

Ratio δΔnS/δΔnS (f = 0 Hz) for the iron-doped sample as a function of chopper frequency f at different pump intensities. With increasing frequency the values tend to decrease. The dotted curve is a guide to the eye, and the dashed–dotted line represents the frequency-independent part of the light-induced birefringence change achieved at low intensities with this experimental setup.

Fig. 7
Fig. 7

Two-center charge transport model for LiNbO3:Fe.6 Arrows indicate possible transitions. At very low iron concentrations NFe the model works nearly as a one-center Nb Li 4 + / 5 + model (window with dotted frame and thicker arrows). CB, conduction band; VB, valence band.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n o ( e ) = - ½ n o ( e ) 3 r 113 ( 333 ) E ,
δ Δ n = Δ n e - Δ n o = Φ ( E ) - Φ ( 0 ) 2 π λ t d ,
δ Δ n ( t ) = δ Δ n S [ 1 - exp ( - t / τ ) ] .
σ 0 = 0 / τ ,

Metrics