Abstract

The level of second-harmonic generation (SHG) in poled low-water fused silica was altered by preannealing in aqueous and dry-nitrogen atmospheres. The effect of water and heat was found to depend on the lot from which the material originated. The effect on the SHG of either a wet or a dry preanneal was sometimes found to be reversible by the opposite preannealing process. For both wet and dry preannealed samples the SHG was found to have both near-surface (<25-μm) and bulk (≈1.5-mm) components. Electron paramagnetic resonance (EPR) data revealed the presence of Si and Ge E′ defect sites and showed that the relative concentrations of these sites was altered by the preannealing processes. EPR and SHG data provided evidence for a second-order bond effect along with a third-order hole-filling effect as sources of the nonlinearity.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B. 11, 665–669 (1994).
    [CrossRef]
  3. H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
    [CrossRef]
  4. P. G. Kazansky, A. Kamal, P. St, and J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
    [CrossRef] [PubMed]
  5. S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
    [CrossRef]
  6. E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
    [CrossRef]
  7. E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
    [CrossRef]
  8. W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electret,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
    [CrossRef]
  9. J. Jerphagnon and S. K. Kurtz, “Maker-fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  10. X.-C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic coefficient in poled amorphous silica,” Opt. Lett. 19, 1819–1821 (1994).
    [CrossRef] [PubMed]
  11. D. L. Griscom, “Characterization of three E′-center variants in X- and γ-irradiated high purity a-SiO2,” Nucl. Instrum. Meth. Phys. Res. B 1, 481–488 (1984).
    [CrossRef]
  12. R. W. Lee, “On the role of hydroxyl in the diffusion of hydrogen in fused silica,” Phys. Chem. Glasses 5, 35–43 (1964).
  13. J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
    [CrossRef]
  14. Information on the fringing pattern associated with two thin near-surface SHG regions on opposite sample faces was provided by a reviewer. This has been subsequently verified by the authors.
  15. G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
    [CrossRef]
  16. T. E. Tsai, M. A. Saifi, E. J. Friebele, D. L. Griscom, and U. Osterberg, “Correlation of defect centers with second-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers,” Opt. Lett. 14, 1023–1025 (1989).
    [CrossRef] [PubMed]
  17. David L. Griscom, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1994).
  18. R. A. B. Devine and C. Fiori, “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2,” J. Appl. Phys. 58, 3368–3372 (1985).
    [CrossRef]
  19. M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).
  20. G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
    [CrossRef]
  21. R. S. McDonald, “Surface functionality of amorphous silica by infrared spectroscopy,” J. Phys. Chem. 62, 1168–1178 (1958).
    [CrossRef]
  22. R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
    [CrossRef]
  23. R. A. B. Devine, “The role of activation energy distributions in diffusion related annealing in SiO2,” J. Appl. Phys. 58, 716–719 (1985).
    [CrossRef]
  24. F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
    [CrossRef] [PubMed]
  25. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  26. F. Freund, “Conversion of dissolved ‘water’ into molecular hydrogen and peroxy linkages,” J. Non-Cryst. Solids 71, 195–202 (1985).
    [CrossRef]

1994 (2)

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B. 11, 665–669 (1994).
[CrossRef]

X.-C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic coefficient in poled amorphous silica,” Opt. Lett. 19, 1819–1821 (1994).
[CrossRef] [PubMed]

1993 (2)

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

P. G. Kazansky, A. Kamal, P. St, and J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
[CrossRef] [PubMed]

1992 (1)

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electret,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

1991 (2)

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
[CrossRef]

1986 (1)

G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
[CrossRef]

1985 (3)

R. A. B. Devine and C. Fiori, “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2,” J. Appl. Phys. 58, 3368–3372 (1985).
[CrossRef]

R. A. B. Devine, “The role of activation energy distributions in diffusion related annealing in SiO2,” J. Appl. Phys. 58, 716–719 (1985).
[CrossRef]

F. Freund, “Conversion of dissolved ‘water’ into molecular hydrogen and peroxy linkages,” J. Non-Cryst. Solids 71, 195–202 (1985).
[CrossRef]

1984 (1)

D. L. Griscom, “Characterization of three E′-center variants in X- and γ-irradiated high purity a-SiO2,” Nucl. Instrum. Meth. Phys. Res. B 1, 481–488 (1984).
[CrossRef]

1981 (1)

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

1977 (1)

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

1975 (1)

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

1971 (1)

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

1970 (2)

J. Jerphagnon and S. K. Kurtz, “Maker-fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
[CrossRef]

1969 (1)

E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
[CrossRef]

1964 (1)

R. W. Lee, “On the role of hydroxyl in the diffusion of hydrogen in fused silica,” Phys. Chem. Glasses 5, 35–43 (1964).

1958 (1)

R. S. McDonald, “Surface functionality of amorphous silica by infrared spectroscopy,” J. Phys. Chem. 62, 1168–1178 (1958).
[CrossRef]

Andrews, J. M.

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

Arndt, J.

R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
[CrossRef]

Aslanova, M. S.

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

Berglund, C. N.

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
[CrossRef]

Bergveld, P.

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electret,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

Brueck, S. R. J.

Calise, J. A.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Capponi, J. J.

R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
[CrossRef]

R. A. B. Devine, “The role of activation energy distributions in diffusion related annealing in SiO2,” J. Appl. Phys. 58, 716–719 (1985).
[CrossRef]

R. A. B. Devine and C. Fiori, “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2,” J. Appl. Phys. 58, 3368–3372 (1985).
[CrossRef]

Feigl, F. J.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Fiori, C.

R. A. B. Devine and C. Fiori, “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2,” J. Appl. Phys. 58, 3368–3372 (1985).
[CrossRef]

Freund, F.

F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
[CrossRef] [PubMed]

F. Freund, “Conversion of dissolved ‘water’ into molecular hydrogen and peroxy linkages,” J. Non-Cryst. Solids 71, 195–202 (1985).
[CrossRef]

Freund, M. M.

F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
[CrossRef] [PubMed]

Friebele, E. J.

Goetzberger, A.

E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
[CrossRef]

Griscom, D. L.

Griscom, David L.

David L. Griscom, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1994).

Hench, L. L.

G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
[CrossRef]

Holmberg, G. L.

G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker-fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kamal, A.

Kamiya, K.

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Kazansky, P. G.

Khazanov, V. E.

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

Klimanov, S. G.

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

Kuper, A. B.

G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker-fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Lai, S. K.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Lee, R. W.

R. W. Lee, “On the role of hydroxyl in the diffusion of hydrogen in fused silica,” Phys. Chem. Glasses 5, 35–43 (1964).

Long, X.-C.

Masuda, M. M.

F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
[CrossRef] [PubMed]

Matsuoka, J.

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

McDonald, R. S.

R. S. McDonald, “Surface functionality of amorphous silica by infrared spectroscopy,” J. Phys. Chem. 62, 1168–1178 (1958).
[CrossRef]

Miraldi, F. D.

G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
[CrossRef]

Mito, M.

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Mukherjee, N.

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B. 11, 665–669 (1994).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Myers, R. A.

Nasu, H.

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Nicollian, E. H.

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
[CrossRef]

Okamota, H.

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Olthuis, W.

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electret,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

Oriel, G.

G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
[CrossRef]

Osterberg, U.

Phalippou, J.

G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
[CrossRef]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Rudakova, S. E.

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

Russell, J.

Saifi, M. A.

Schmidt, P. F.

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

Shelby, J. E.

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

St, P.

Tsai, T. E.

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Young, D. R.

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiO2,” Appl. Phys. Lett. 15, 174–177 (1969).
[CrossRef]

IEEE Trans. Electr. Insul. (1)

W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide electret,” IEEE Trans. Electr. Insul. 27, 691–697 (1992).
[CrossRef]

Izv. Akad. Nauk SSSR, Neorgan. Mater. (1)

M. S. Aslanova, S. G. Klimanov, S. E. Rudakova, and V. E. Khazanov, “ESR- and IR- spectral investigation of quartz fibers,” Izv. Akad. Nauk SSSR, Neorgan. Mater. 11, 890–895 (1975).

J. Appl. Phys. (6)

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker-fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, “Electrochemical charging of thermal SiO2films by injected electron currents,” J. Appl. Phys. 42, 5654–5664 (1971).
[CrossRef]

S. K. Lai, D. R. Young, J. A. Calise, and F. J. Feigl, “Reduction of electron trapping in silicon dioxide by high-temperature nitrogen anneal,” J. Appl. Phys. 52, 5691–5695 (1981).
[CrossRef]

R. A. B. Devine, “The role of activation energy distributions in diffusion related annealing in SiO2,” J. Appl. Phys. 58, 716–719 (1985).
[CrossRef]

R. A. B. Devine and C. Fiori, “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2,” J. Appl. Phys. 58, 3368–3372 (1985).
[CrossRef]

J. Electrochem. Soc. (1)

G. L. Holmberg, A. B. Kuper, and F. D. Miraldi, “Water contamination in thermal oxide on silicon,” J. Electrochem. Soc. 117, 677–682 (1970).
[CrossRef]

J. Mater. Res. (1)

F. Freund, M. M. Masuda, and M. M. Freund, “Highly mobile oxygen hole-type charge carriers in fused silica,” J. Mater. Res. 6, 1619–1622 (1991).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (2)

F. Freund, “Conversion of dissolved ‘water’ into molecular hydrogen and peroxy linkages,” J. Non-Cryst. Solids 71, 195–202 (1985).
[CrossRef]

G. Oriel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” J. Non-Cryst. Solids 88, 114–130 (1986).
[CrossRef]

J. Opt. Soc. Am. B. (1)

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B. 11, 665–669 (1994).
[CrossRef]

J. Phys. Chem. (1)

R. S. McDonald, “Surface functionality of amorphous silica by infrared spectroscopy,” J. Phys. Chem. 62, 1168–1178 (1958).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Nasu, H. Okamota, M. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Nucl. Instrum. Meth. Phys. Res. B (1)

D. L. Griscom, “Characterization of three E′-center variants in X- and γ-irradiated high purity a-SiO2,” Nucl. Instrum. Meth. Phys. Res. B 1, 481–488 (1984).
[CrossRef]

Opt. Lett. (4)

Phys. Chem. Glasses (1)

R. W. Lee, “On the role of hydroxyl in the diffusion of hydrogen in fused silica,” Phys. Chem. Glasses 5, 35–43 (1964).

Phys. Rev. B (1)

R. A. B. Devine, J. J. Capponi, and J. Arndt, “Oxygen-diffusion kinetics in densified, amorphous SiO2,” Phys. Rev. B 35, 770–773 (1987).
[CrossRef]

Other (3)

Information on the fringing pattern associated with two thin near-surface SHG regions on opposite sample faces was provided by a reviewer. This has been subsequently verified by the authors.

David L. Griscom, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1994).

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of the Maker-fringe scan. The inset shows the geometrical arrangement of the p-polarized input 1.06-μm beam with respect to a poled sample. A, RG695 filter; B, attenuation filters; C, BG18 filter; D, 530-nm band-pass filter.

Fig. 2
Fig. 2

Relative intensity of SHG (a.u.) versus rotation angle for poled samples from lot 2 that had been wet preannealed at a series of temperatures: (a) 400, (b) 500, (c) 600, (d) 700, (e) 800, (f) 900 °C. [Note: The amplitudes of the Maker-fringe scans are not drawn to scale. The amplitudes of (b)–(f) relative to (a) are indicated to the right of the Maker-fringe scans.]

Fig. 3
Fig. 3

Relative intensity of SHG (a.u.) versus rotation angle for poled samples from lot 3 that had been wet preannealed at a series of temperatures: (a) 400, (b) 500, (c) 600, (d) 700, (e) 800, (f) 900 °C. [Note: The amplitudes of the Maker-fringe scans are not drawn to scale. The amplitudes of (b)–(f) relative to (a) are indicated to the right of the Maker-fringe scans.]

Fig. 4
Fig. 4

Percentage change in d33 for a series of samples from lots 1–3 that have been wet preannealed over the temperature range 400–900 °C. [Note: Samples from lot 1 have been only wet preannealed, whereas samples from lots 2 and 3 have been both wet and dry preannealed (see Fig. 5)].

Fig. 5
Fig. 5

Percentage change in d33 for a series of samples from lots 2–4 that have been dry preannealed over the temperature range 400–900 °C. [Note: Samples from lot 4 have been only dry preannealed, whereas samples from lots 2 and 3 have been both wet and dry preannealed (see Fig. 4)].

Fig. 6
Fig. 6

Relative intensity of SHG (a.u.) versus rotation angle for a poled as-received sample.

Fig. 7
Fig. 7

Theoretical Maker-fringe fit with an index-of-refraction value of 1.46071 for 532-nm radiation and an index-of-refraction value of 1.44963 for 1.06-μm radiation. An interaction layer thickness of 1.501 mm, which was equivalent to the sample thickness, was also used (b). Experimental Maker-fringe scan of a sample after dry preannealing.

Fig. 8
Fig. 8

High-power second-harmonic mode electron paramagnetic resonance spectrum of a sample of fused silica. The peak located at a magnetic field value of 3492.20 G has been attributed to Ge E′ center, and that located at 3487.91 G has been attributed to the Si E′ center.

Fig. 9
Fig. 9

Samples from lot 2 that have been wet preannealed over a series of temperatures from 400 to 900 °C. (a) d33 (pm/V) versus preannealing temperature. (b) Percentage by weight hydroxide versus preannealing temperature. (c) Relative concentration of Si E′ centers (a.u.) versus preannealing temperature. (d) Relative concentration of Ge E′ centers (a.u.) versus preannealing temperature.

Fig. 10
Fig. 10

Samples from lot 2 that have been dry preannealed over a series of temperatures from 400 to 900 °C. (a) d33 (pm/V) versus preannealing temperature (°C). (b) Image charge versus preannealing temperature. (c) Relative concentration of Si E′ centers (a.u.) versus preannealing temperature. (d) Relative concentration of Ge E′ centers (a.u.) versus preannealing.

Fig. 11
Fig. 11

Samples from lot 3 that have been wet preannealed over a series of temperatures from 400 to 900 °C. (a) d33 (pm/V) versus preannealing temperature. (b) Image charge versus preannealing temperature. (c) Relative concentration of Ge E′ centers (a.u.) versus preannealing temperature. (d) Relative concentration of Si E′ centers (a.u.) versus preannealing temperature.

Fig. 12
Fig. 12

Samples from lot 3 that have been dry preannealed over a series of temperatures from 400 to 900 °C. (a) d33 (pm/V) versus preannealing temperature. (b) Image charge versus preannealing temperature. (c) Relative concentration of Si E′ centers (a.u.) versus preannealing temperature. (d) Relative concentration of Ge E′ centers (a.u.) versus preannealing temperature.

Tables (1)

Tables Icon

Table 1 EPR Parameters Used for Analysis of Defect Sites in Fused Silica by the High-Power Second-Harmonic Mode Technique

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Si O Si + H 2 O 2 Si OH ,
Si OH + H 2 O Si O - + H 3 O + ,
Si O - + H 3 O + + e - Si O - + H 2 O + H .
Δ k = ( 4 π / λ ) ( n ω cos θ ω - n 2 ω cos θ 2 ω ) ,
P NL = [ 0 0 0 0 d 31 0 0 0 0 d 31 0 0 d 31 d 31 d 33 0 0 0 ] ( E 1 2 E 2 2 E 3 2 2 E 2 E 3 2 E 1 E 3 2 E 1 E 2 ) .
P NL = E 2 d 33 ( 2 / 3 sin θ ω cos θ ω 0 1 / 3 cos 2 θ ω + sin 2 θ ω ) .
d 33 = d 11 , y [ P 2 ω , s P 2 ω , y f y ( θ y ) f s ( θ s ) sin 2 Ψ y sin 2 Ψ s ] 1 / 2 ,
Si + . Si + H 2 O Si + HO Si + H .
Si + . Ge + H 2 O Si + HO Ge + H .

Metrics