Abstract

The formation of electrostrictive gratings in fluids is calculated by inclusion of viscosity and heat transfer. The reflectivity of the grating performs a damped oscillation with alternately higher and lower maxima. The normalized difference in height is determined by the thermal conductivity of the medium. Measurements have been performed for argon and nitrogen and are compared with the theory. Furthermore, the combined effect of electrostriction and radiative absorption is discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
    [CrossRef]
  2. Y. Yan and K. A. Nelson, "Impulsive stimulated light scattering," J. Chem. Phys. 87, 6240–6256, 6257–6265 (1987); Y. Yan, L. Cheng, and K. A. Nelson, in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), pp. 299–355.
    [CrossRef]
  3. B. Hemmerling and A. Stampanoni-Panariello, "Imaging of flames and cold flows in air by diffraction from a laser-induced grating," Appl. Phys. B 57, 281–285 (1993).
    [CrossRef]
  4. D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
    [CrossRef]
  5. A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
    [CrossRef] [PubMed]
  6. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992), Chap. 8.6.
  7. H. Eichler and H. Stahl, "Time and frequency behavior of sound waves thermally induced by modulated laser pulses," J. Appl. Phys. 44, 3429–3435 (1973); H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  8. J. R. Salcedo and A. E. Siegman, "Laser induced photoacoustic grating effects in molecular crystals," IEEE J. Quantum Electron. QE-15, 250–256 (1979).
    [CrossRef]
  9. Encyclopédie des gaz (Elsevier, Amsterdam, 1976).
  10. D. K. Hsu, D. L. Monts, and R. N. Zare, Spectral Atlas of NO2, 5530 to 6480Å (Academic, New York, 1978).

1995 (1)

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

1994 (1)

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

1993 (1)

B. Hemmerling and A. Stampanoni-Panariello, "Imaging of flames and cold flows in air by diffraction from a laser-induced grating," Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

1987 (1)

Y. Yan and K. A. Nelson, "Impulsive stimulated light scattering," J. Chem. Phys. 87, 6240–6256, 6257–6265 (1987); Y. Yan, L. Cheng, and K. A. Nelson, in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), pp. 299–355.
[CrossRef]

1981 (1)

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

1979 (1)

J. R. Salcedo and A. E. Siegman, "Laser induced photoacoustic grating effects in molecular crystals," IEEE J. Quantum Electron. QE-15, 250–256 (1979).
[CrossRef]

1973 (1)

H. Eichler and H. Stahl, "Time and frequency behavior of sound waves thermally induced by modulated laser pulses," J. Appl. Phys. 44, 3429–3435 (1973); H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Booze, J. A.

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992), Chap. 8.6.

Crim, F. F.

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

Eichler, H.

H. Eichler and H. Stahl, "Time and frequency behavior of sound waves thermally induced by modulated laser pulses," J. Appl. Phys. 44, 3429–3435 (1973); H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Fayer, M. D.

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

Govoni, D. E.

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

B. Hemmerling and A. Stampanoni-Panariello, "Imaging of flames and cold flows in air by diffraction from a laser-induced grating," Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

Hsu, D. K.

D. K. Hsu, D. L. Monts, and R. N. Zare, Spectral Atlas of NO2, 5530 to 6480Å (Academic, New York, 1978).

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

Lutz, D. R.

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

Madison, L.

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

Monts, D. L.

D. K. Hsu, D. L. Monts, and R. N. Zare, Spectral Atlas of NO2, 5530 to 6480Å (Academic, New York, 1978).

Nelson, K. A.

Y. Yan and K. A. Nelson, "Impulsive stimulated light scattering," J. Chem. Phys. 87, 6240–6256, 6257–6265 (1987); Y. Yan, L. Cheng, and K. A. Nelson, in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), pp. 299–355.
[CrossRef]

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

Salcedo, J. R.

J. R. Salcedo and A. E. Siegman, "Laser induced photoacoustic grating effects in molecular crystals," IEEE J. Quantum Electron. QE-15, 250–256 (1979).
[CrossRef]

Siegman, A. E.

J. R. Salcedo and A. E. Siegman, "Laser induced photoacoustic grating effects in molecular crystals," IEEE J. Quantum Electron. QE-15, 250–256 (1979).
[CrossRef]

Sinha, A.

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

Stahl, H.

H. Eichler and H. Stahl, "Time and frequency behavior of sound waves thermally induced by modulated laser pulses," J. Appl. Phys. 44, 3429–3435 (1973); H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

B. Hemmerling and A. Stampanoni-Panariello, "Imaging of flames and cold flows in air by diffraction from a laser-induced grating," Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

Yan, Y.

Y. Yan and K. A. Nelson, "Impulsive stimulated light scattering," J. Chem. Phys. 87, 6240–6256, 6257–6265 (1987); Y. Yan, L. Cheng, and K. A. Nelson, in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), pp. 299–355.
[CrossRef]

Zare, R. N.

D. K. Hsu, D. L. Monts, and R. N. Zare, Spectral Atlas of NO2, 5530 to 6480Å (Academic, New York, 1978).

Appl. Phys. B (1)

B. Hemmerling and A. Stampanoni-Panariello, "Imaging of flames and cold flows in air by diffraction from a laser-induced grating," Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Crim, "The non-resonant signal in laser-induced grating spectroscopy of gases," Chem. Phys. Lett. 216, 525–529 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Salcedo and A. E. Siegman, "Laser induced photoacoustic grating effects in molecular crystals," IEEE J. Quantum Electron. QE-15, 250–256 (1979).
[CrossRef]

J. Appl. Phys. (1)

H. Eichler and H. Stahl, "Time and frequency behavior of sound waves thermally induced by modulated laser pulses," J. Appl. Phys. 44, 3429–3435 (1973); H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

J. Chem. Phys. (1)

Y. Yan and K. A. Nelson, "Impulsive stimulated light scattering," J. Chem. Phys. 87, 6240–6256, 6257–6265 (1987); Y. Yan, L. Cheng, and K. A. Nelson, in Advances in Non-Linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1988), pp. 299–355.
[CrossRef]

Phys. Rev. A (1)

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, "Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers," Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. A. Nelson, D. R. Lutz, M. D. Fayer, and L. Madison, "Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interaction in solids," Phys. Rev. B 24, 3261–3275 (1981); K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, "Optical generation of tunable ultrasonic waves," J. Appl. Phys. 53, 1144–1149 (1982); R. J. D. Miller, R. Casalegno, K. A. Nelson, and M. D. Fayer, "Laser-induced ultrasonics: A dynamic holographic approach to the measurement of weak absoptions, optoelastic constants and acoustic attenuation," Chem. Phys. 72, 371–379 (1982).
[CrossRef]

Other (3)

Encyclopédie des gaz (Elsevier, Amsterdam, 1976).

D. K. Hsu, D. L. Monts, and R. N. Zare, Spectral Atlas of NO2, 5530 to 6480Å (Academic, New York, 1978).

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992), Chap. 8.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup. YAG I, YAG II, Nd:YAG lasers; BS1, BS2, beam splitters; EB1, EB2, excitation beams; D, beam dump; P1–P3, polarizers; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Signal intensity versus time delay between the excitation beams and the probe beam for (a) Ar at 1 bar, (b) N2 at 1 bar, (c) Ar at 5 bars.

Tables (1)

Tables Icon

Table 1 Determination of the Relative Weight of the Rayleigh and Brillouin Modes in Electrostrictive Gratingsa

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2 ρ t 2 - v 2 γ Δ ρ - v 2 β p ρ 0 γ Δ T - η ρ 0 t ( Δ ρ ) = - ɛ 0 γ e 2 Δ E 2 ,
ρ 0 c v T t - c v ( γ - 1 ) β p ρ t - κ Δ T = n c α ɛ 0 E 2 .
E 2 = A exp ( i q x ) δ ( t - t 0 ) + c . c . ,
ρ ( t , x ) = ρ ( t ) exp ( i q x ) + c . c . , T ( t , x ) = T ( t ) exp ( i q x ) + c . c . ,
Ω 3 + i Γ Ω 2 - ( q 2 v 2 + γ 2 Γ B Γ R ) Ω - i 2 Γ R q 2 v 2 = 0.
Γ = Γ B + γ 2 Γ R , Γ B η q 2 ρ 0 , Γ R 2 κ q 2 ρ 0 c p .
Ω 1 = ω ¯ - i β 1 , Ω 2 = - ω ¯ - i β 1 , Ω 3 = - i β 2 ;             ω ¯ , β 1 , β 2 + .
ρ ( t ) = - 1 4 π γ e ɛ 0 q 2 A - d Ω × exp [ - i Ω ( t - t 0 ) ] ( Ω + i γ 2 Γ R ) ( Ω - Ω 1 ) ( Ω - Ω 2 ) ( Ω - Ω 3 ) .
ρ ( t , x ) = q 2 A γ e ɛ 0 C cos ( q x ) ( ω ¯ + ω 1 ) × exp [ - β 1 ( t - t 0 ) ] Θ ( t - t 0 ) × ( sin [ ω ¯ ( t - t 0 ) ] - χ ω ¯ + ω 1 { cos [ ω ¯ ( t - t 0 ) ] - exp [ - ( β 2 - β 1 ) ( t - t 0 ) ] } ) ,
C = ω ¯ 2 + ( β 1 - β 2 ) 2 , ω 1 = ( β 1 - γ 2 Γ R ) ( β 1 - β 2 ) ω ¯ , χ = γ 2 Γ R - β 2 , Θ ( t - t 0 ) = { 1 t > t 0 0 t < t 0 .
Ω 3 + i Γ Ω 2 - ( q 2 v 2 + Γ 2 4 + Γ R Γ 2 ) Ω - i 2 Γ R ( q 2 v 2 + Γ 2 4 ) = 0.
ω ¯ = q v , β 1 = Γ 2 , β 2 = Γ R 2 ,
Γ Γ B + γ - 1 2 Γ R = q 2 ρ 0 [ η + ( γ - 1 ) κ c p ] .
χ = Γ T γ - 1 2 Γ R .
ρ ( x , t ) 2 = ( q 2 A γ e ɛ 0 C ) 2 cos 2 ( q x ) ( ω ¯ + ω 1 ) 2 2 × exp [ - 2 β 1 ( t - t 0 ) ] ( { 1 - cos [ 2 ω ¯ ( t - t 0 ) ] } + 4 χ ω ¯ + ω 1 exp [ - ( β 2 - β 1 ) ( t - t 0 ) ] × sin [ ω ¯ ( t - t 0 ) ] ) .
γ a = 2 α n c v β p c p q .
ρ ( t , x ) = q 2 A ɛ 0 C cos ( q x ) exp [ - β 1 ( t - t 0 ) ] × { [ ( ω ¯ + ω 1 ) γ e + β 1 - β 2 ω ¯ q v γ a ] sin [ ω ¯ ( t - t 0 ) ] + ( q v γ a - χ γ e ) cos [ ω ¯ ( t - t 0 ) ] - exp [ - ( β 2 - β 1 ) ( t - t 0 ) ] ( q v γ a - χ γ e ) } Θ ( t - t 0 ) .
ρ ( x , t ) 2 1 - cos [ 2 ω ¯ ( t - t 0 ) ] - 4 ( γ a / γ e ) sin [ ω ¯ ( t - t 0 ) ] .

Metrics