Abstract

We characterize the soliton-train emission from an Er–Yb-doped fiber loop laser. We discuss the self-starting dynamics and pulse-repetition-rate control in this sliding-frequency soliton laser. We show that the laser truly self-starts after only one cavity round trip. In the steady state the laser emits a closely spaced train of solitons. We also show that the output pulse width may be controlled by the interplay of continuous frequency shifting, bandwidth-limited amplification, and nonlinear polarization rotation of the circulating solitons. The repetition rate is fixed by means of a weak intracavity feedback. The laser is tunable by shifting of the filter wavelength through the whole spectral band of the active fiber.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Duling, Electron Lett. 27, 54 (1991);D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Mastsas, Electron. Lett. 27, 730 (1991).
    [Crossref]
  2. F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
    [Crossref]
  3. P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
    [Crossref]
  4. H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122 (1993).
    [Crossref]
  5. F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
    [Crossref]
  6. Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
    [Crossref]
  7. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [Crossref] [PubMed]
  8. Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
    [Crossref]
  9. P. A. Belanger, J. Opt. Soc. of Am. B 8, 2077 (1991);H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [Crossref]
  10. Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
    [Crossref]
  11. H. H. Chen and C. S. Li, Phys. Rev. Lett. 37, 693 (1976).
    [Crossref]

1994 (3)

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[Crossref]

Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
[Crossref]

1993 (2)

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122 (1993).
[Crossref]

1992 (2)

L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[Crossref] [PubMed]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
[Crossref]

1991 (2)

P. A. Belanger, J. Opt. Soc. of Am. B 8, 2077 (1991);H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[Crossref]

I. N. Duling, Electron Lett. 27, 54 (1991);D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Mastsas, Electron. Lett. 27, 730 (1991).
[Crossref]

1990 (1)

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[Crossref]

1976 (1)

H. H. Chen and C. S. Li, Phys. Rev. Lett. 37, 693 (1976).
[Crossref]

Belanger, P. A.

P. A. Belanger, J. Opt. Soc. of Am. B 8, 2077 (1991);H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[Crossref]

Bordogna, G.

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Bossalini, L.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122 (1993).
[Crossref]

Chen, H. H.

H. H. Chen and C. S. Li, Phys. Rev. Lett. 37, 693 (1976).
[Crossref]

Duling, I. N.

I. N. Duling, Electron Lett. 27, 54 (1991);D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Mastsas, Electron. Lett. 27, 730 (1991).
[Crossref]

Evangelides, S. G.

Fontana, F.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Franco, P.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Gordon, J. P.

Hale, P. D.

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[Crossref]

Kodama, Y.

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[Crossref]

Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
[Crossref]

Kowalski, F. V.

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[Crossref]

Li, C. S.

H. H. Chen and C. S. Li, Phys. Rev. Lett. 37, 693 (1976).
[Crossref]

Midrio, M.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Mollenauer, L. F.

Romagnoli, M.

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[Crossref]

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
[Crossref]

Sabert, H.

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122 (1993).
[Crossref]

Wabnitz, S.

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[Crossref]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
[Crossref]

Electron Lett. (1)

I. N. Duling, Electron Lett. 27, 54 (1991);D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Mastsas, Electron. Lett. 27, 730 (1991).
[Crossref]

Electron. Lett. (5)

F. Fontana, G. Bordogna, P. Franco, M. Midrio, and M. Romagnoli, Electron. Lett. 29, 1652 (1993).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 28, 1981 (1992).
[Crossref]

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122 (1993).
[Crossref]

F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 321 (1994).
[Crossref]

Y. Kodama, M. Romagnoli, and S. Wabnitz, Electron. Lett. 30, 261 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

P. D. Hale and F. V. Kowalski, IEEE J. Quantum Electron. 26, 1845 (1990).
[Crossref]

J. Opt. Soc. of Am. B (1)

P. A. Belanger, J. Opt. Soc. of Am. B 8, 2077 (1991);H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. H. Chen and C. S. Li, Phys. Rev. Lett. 37, 693 (1976).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. PM, powermeter.

Fig. 2
Fig. 2

Transient dynamics of the sliding-frequency soliton laser. a–c, Resonant case. a, The upper trace is the rf signal, and the lower trace is the optical signal whose modulation depends on the relaxation oscillation; b, enlarged detail of a: here it is shown that an envelope is formed after the first round trip of the radiation in the cavity; c, expansion of one of the envelopes shown in b. d, Nonresonant case: the square-shaped envelope consists of a long sequence of closely spaced solitons; the width of the envelope increases while the pump power is increased.

Fig. 3
Fig. 3

Long-scan autocorrelation trace of the train of pulses circulating in the laser. SH, second harmonic.

Fig. 4
Fig. 4

Pulse width versus laser emission wavelength. The inset shows the spontaneous emission spectrum of the Er–Yb-doped fiber. The shaded region indicates the region in which the cavity bandwidth also depends on the gain spectral shape. This explains the increase in pulse width, λ < λp. The dashed line is obtained with 1.763r = 8.1 ps, a = 0.011, β = 0.087, and nonlinear gain coefficient γ = 0.032.

Fig. 5
Fig. 5

Soliton equilibrium frequency versus laser emission wavelength. The negative sign of the soliton frequency is due to the frequency downshift induced by the AOM. The fitting curve is obtained with the assumption κf = κc and with the same choice of parameters as in Fig. 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u Z i 2 2 u T 2 i | u | 2 u i α 0 T u = δ u + V f u T + β 2 u T 2 + γ | u | 2 u .
u ( T , Z ) = η sech { η [ t ξ ( Z ) ] } exp [ i κ ( Z ) T + i ψ ( Z ) ] ,
d η d Z = 2 δ η 2 β η ( η 2 3 + κ 2 ) + 4 3 γ η 3 ,
d κ d Z = α 4 3 β η 2 κ .
α = ( 2 π 10 6 ) Δ f τ 3 Z A β 2 , β = 2 L D Δ Ω 2 Z A τ 2 , γ = γ 1 P 0 L D ,
[ 27 8 ( 2 π 10 6 ) 2 Δ f 2 Δ Ω 4 4 ] τ 6 + ( γ 1 P 0 Δ Ω 2 Z A ) τ 2 = 1 .
α c = ± β [ 8 27 ( 1 2 γ β ) ] 1 / 2 , κ c = ± [ 1 6 ( 1 2 γ β ) ] 1 / 2 ,

Metrics