Abstract

We apply infrared degenerate four-wave mixing (IR DFWM) spectroscopy to the investigation of CH4 and C2H2, making use of C—H stretching rovibrational transitions near 3000 and 3300 cm−1, respectively. The spectrum of C2H2 is fitted quite well by a two-level stationary-absorber model in the low-saturation limit, IIsat. The spectrum of CH4 is not accurately described by this model in the low-saturation limit, but it is described well by the same model in the high-saturation limit, I ∼ 10 Isat. The reason for the disagreement at low intensity is not clear, but the results indicate that approximations made to account for spectroscopic line broadening may be inadequate for the ν3 vibrational band of CH4. IR DFWM provides a sensitive diagnostic, ∼10 molecules/cm3 per quantum state, for the molecules investigated here, and we believe that it holds great promise for the investigation of polyatomic molecules that have IR active rovibrational transitions, in general.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta and D. G. Lilley, eds. (Abacus, Cambridge, Mass., 1988), p. 310.
  2. S. A. J. Druet and J.-P. E. Taran, Progr. Quantum Electron. 7, 1 (1981).
    [CrossRef]
  3. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
    [CrossRef] [PubMed]
  4. R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 10, 1770 (1992).
    [CrossRef]
  5. R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
    [CrossRef] [PubMed]
  6. Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
    [CrossRef]
  7. T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
    [CrossRef]
  8. D. J. Rakestraw, T. Dreier, and L. R. Thorne, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Proceedings of the Twenty-Third International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1991), p. 1901.
    [CrossRef]
  9. P. Ewart and S. V. O’Leary, Opt. Lett. 11, 2791986).
    [CrossRef]
  10. T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
    [CrossRef] [PubMed]
  11. B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
    [CrossRef]
  12. P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
    [CrossRef]
  13. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).
  14. W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
    [CrossRef]
  15. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
    [CrossRef]
  16. P. H. Vaccaro, “Resonant four-wave mixing spectroscopy: a new probe for vibrationally excited species,” in Advances in Physical Chemistry, C.-Y. Ng, ed. (World Scientific, Singapore, to be published).
  17. C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
    [CrossRef]
  18. V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
    [CrossRef]
  19. J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
    [CrossRef]
  20. A. S. Pine, J. Opt. Soc. Am. 66, 2, 97 (1976).
    [CrossRef]
  21. D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
    [CrossRef]
  22. S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I: Weak-field limit,” J. Chem. Phys. (to be published).
  23. A. Ben-Reuven, Phys. Rev. 145, 7 (1966).
    [CrossRef]
  24. B. Gentry and L. L. Strow, J. Chem. Phys. 86, 5722 (1987).
    [CrossRef]
  25. R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), p. 1653.
    [CrossRef]
  26. P. R. Regnier and J.-P. E. Taran, “Gas concentration measurement by coherent Raman anti-Stokes scattering,” in Laser Raman Gas Diagnostics, M. Lappand and C. M. Penney, eds. (Plenum, New York, 1974), p. 87.
    [CrossRef]
  27. R. L. Farrow, Sandia National Laboratories, Livermore, Calif. 94550, and J. B. Jeffries, SRI International, Menlo Park, Calif. 94025 (personal communication, 1994).

1993 (3)

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

1992 (5)

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 10, 1770 (1992).
[CrossRef]

R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

1990 (3)

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[CrossRef]

T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
[CrossRef] [PubMed]

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

1987 (1)

B. Gentry and L. L. Strow, J. Chem. Phys. 86, 5722 (1987).
[CrossRef]

1986 (1)

1985 (1)

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

1982 (1)

C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
[CrossRef]

1981 (1)

S. A. J. Druet and J.-P. E. Taran, Progr. Quantum Electron. 7, 1 (1981).
[CrossRef]

1976 (1)

A. S. Pine, J. Opt. Soc. Am. 66, 2, 97 (1976).
[CrossRef]

1966 (1)

A. Ben-Reuven, Phys. Rev. 145, 7 (1966).
[CrossRef]

Abrams, R. L.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

Astill, A. G.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

Baldacci, A.

C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
[CrossRef]

Benner, D. C.

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

Ben-Reuven, A.

A. Ben-Reuven, Phys. Rev. 145, 7 (1966).
[CrossRef]

Blanquet, G.

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[CrossRef]

Bouanich, J. P.

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

Danehy, P. M.

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

Devi, V. M.

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

Dreier, T.

R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 10, 1770 (1992).
[CrossRef]

T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
[CrossRef] [PubMed]

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[CrossRef]

D. J. Rakestraw, T. Dreier, and L. R. Thorne, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Proceedings of the Twenty-Third International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1991), p. 1901.
[CrossRef]

Druet, S. A. J.

S. A. J. Druet and J.-P. E. Taran, Progr. Quantum Electron. 7, 1 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta and D. G. Lilley, eds. (Abacus, Cambridge, Mass., 1988), p. 310.

Ewart, P.

Farrow, R. L.

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 10, 1770 (1992).
[CrossRef]

R. L. Farrow, Sandia National Laboratories, Livermore, Calif. 94550, and J. B. Jeffries, SRI International, Menlo Park, Calif. 94025 (personal communication, 1994).

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), p. 1653.
[CrossRef]

Forsman, J. W.

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

Fridman-Hill, E. J.

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

Gentry, B.

B. Gentry and L. L. Strow, J. Chem. Phys. 86, 5722 (1987).
[CrossRef]

Goodwin, D. G.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

Green, D. S.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

Greenhalgh, D. A.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[CrossRef]

Jeffries, J. B.

R. L. Farrow, Sandia National Laboratories, Livermore, Calif. 94550, and J. B. Jeffries, SRI International, Menlo Park, Calif. 94025 (personal communication, 1994).

Kandell, S. A.

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

Kruger, C. H.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

Lam, J. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

Lambot, D.

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

Liao, P. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

Lind, R. C.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

Lucht, R. P.

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

Mann, B. A.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

O’Leary, S. V.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

P. Ewart and S. V. O’Leary, Opt. Lett. 11, 2791986).
[CrossRef]

Owano, T. G.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

Paul, P. H.

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

Pine, A. S.

A. S. Pine, J. Opt. Soc. Am. 66, 2, 97 (1976).
[CrossRef]

Rahn, L. A.

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I: Weak-field limit,” J. Chem. Phys. (to be published).

Rakestraw, D. J.

R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Soc. Am. B 9, 10, 1770 (1992).
[CrossRef]

T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
[CrossRef] [PubMed]

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[CrossRef]

D. J. Rakestraw, T. Dreier, and L. R. Thorne, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Proceedings of the Twenty-Third International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1991), p. 1901.
[CrossRef]

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), p. 1653.
[CrossRef]

Rao, K. N.

C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
[CrossRef]

Regnier, P. R.

P. R. Regnier and J.-P. E. Taran, “Gas concentration measurement by coherent Raman anti-Stokes scattering,” in Laser Raman Gas Diagnostics, M. Lappand and C. M. Penney, eds. (Plenum, New York, 1974), p. 87.
[CrossRef]

Rinsland, C. P.

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
[CrossRef]

Sidney, B. D.

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

Smith, M. A. H.

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

Steel, D. G.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

Strow, L. L.

B. Gentry and L. L. Strow, J. Chem. Phys. 86, 5722 (1987).
[CrossRef]

Taran, J.-P. E.

S. A. J. Druet and J.-P. E. Taran, Progr. Quantum Electron. 7, 1 (1981).
[CrossRef]

P. R. Regnier and J.-P. E. Taran, “Gas concentration measurement by coherent Raman anti-Stokes scattering,” in Laser Raman Gas Diagnostics, M. Lappand and C. M. Penney, eds. (Plenum, New York, 1974), p. 87.
[CrossRef]

Thorne, L. R.

D. J. Rakestraw, T. Dreier, and L. R. Thorne, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Proceedings of the Twenty-Third International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1991), p. 1901.
[CrossRef]

Vaccaro, P. H.

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

P. H. Vaccaro, “Resonant four-wave mixing spectroscopy: a new probe for vibrationally excited species,” in Advances in Physical Chemistry, C.-Y. Ng, ed. (World Scientific, Singapore, to be published).

Vander Wal, R. L.

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), p. 1653.
[CrossRef]

Walrand, J.

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

Wasserman, T. A. W.

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

Williams, S.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I: Weak-field limit,” J. Chem. Phys. (to be published).

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

Zare, R. N.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I: Weak-field limit,” J. Chem. Phys. (to be published).

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

Zhang, Q.

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

Appl. Phys. B (3)

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[CrossRef]

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[CrossRef]

P. M. Danehy, E. J. Fridman-Hill, R. P. Lucht, and R. L. Farrow, Appl. Phys. B 57, 243 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Bosenberg and D. R. Guyer, Appl. Phys. Lett. 61, 387 (1992).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

C. P. Rinsland, A. Baldacci, and K. N. Rao, Astrophys. J. Suppl. Ser. 49, 487 (1982).
[CrossRef]

J. Chem. Phys. (2)

Q. Zhang, S. A. Kandell, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 96, 1640 (1992).
[CrossRef]

B. Gentry and L. L. Strow, J. Chem. Phys. 86, 5722 (1987).
[CrossRef]

J. Mol. Spectrosc. (2)

V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, and B. D. Sidney, J. Mol. Spectrosc. 114, 49 (1985).
[CrossRef]

J. P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, J. Mol. Spectrosc. 140, 195 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

A. S. Pine, J. Opt. Soc. Am. 66, 2, 97 (1976).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

D. C. Benner, V. M. Devi, M. A. H. Smith, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 50, 1 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

A. Ben-Reuven, Phys. Rev. 145, 7 (1966).
[CrossRef]

Progr. Quantum Electron. (1)

S. A. J. Druet and J.-P. E. Taran, Progr. Quantum Electron. 7, 1 (1981).
[CrossRef]

Science (2)

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. KrugerScience 259, 1726 (1993).
[CrossRef] [PubMed]

R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

Other (9)

A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta and D. G. Lilley, eds. (Abacus, Cambridge, Mass., 1988), p. 310.

D. J. Rakestraw, T. Dreier, and L. R. Thorne, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Proceedings of the Twenty-Third International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1991), p. 1901.
[CrossRef]

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. (to be published).

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I: Weak-field limit,” J. Chem. Phys. (to be published).

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugatgion and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[CrossRef]

P. H. Vaccaro, “Resonant four-wave mixing spectroscopy: a new probe for vibrationally excited species,” in Advances in Physical Chemistry, C.-Y. Ng, ed. (World Scientific, Singapore, to be published).

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), p. 1653.
[CrossRef]

P. R. Regnier and J.-P. E. Taran, “Gas concentration measurement by coherent Raman anti-Stokes scattering,” in Laser Raman Gas Diagnostics, M. Lappand and C. M. Penney, eds. (Plenum, New York, 1974), p. 87.
[CrossRef]

R. L. Farrow, Sandia National Laboratories, Livermore, Calif. 94550, and J. B. Jeffries, SRI International, Menlo Park, Calif. 94025 (personal communication, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental apparatus.

Fig. 2
Fig. 2

Partial DFWM and absorption spectra of the P branches of the (0010000)–(0000000) and (010(11)0)–(0000000) vibrational bands of acetylene. The C2H2:N2 pressure ratio was 1:2000 at a total pressure of 300 Torr. ωf ∼ 15 μJ, and I/Isat < 0.02.

Fig. 3
Fig. 3

Partial DFWM spectrum for the Q branch of the ν3 vibrational band of methane. The CH4:N2 pressure ratio was 1:2000 at a total pressure of 200 Torr. ωf ∼ 15 μJ, and I/Isat < 0.04.

Fig. 4
Fig. 4

DFWM and absorption spectra of the R(3) branch of the ν3 vibrational band of methane. The CH4:N2 pressure ratio was 1:2000 at a total pressure of 200 Torr. ωf ∼ 15 μJ, and I/Isat < 0.04.

Fig. 5
Fig. 5

DFWM spectrum of the R(3) branch of the ν3 vibrational band of methane taken under optically saturated conditions. The CH4:N2 pressure ratio was ∼1:2000 at a total pressure of 3 Torr. ωf ∼ 150 μJ, and IIsat.

Fig. 6
Fig. 6

Partial DFWM spectrum for the Q branch of the ν3 vibrational band of methane taken under optically saturated conditions. The CH4:N2 pressure ratio was ∼1:2000 at a total pressure of 3 Torr. ωf ∼150 μJ, and IIsat.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I s = ( 2 ω 3 c 2 0 2 ) 2 ( Δ N 0 l ) 2 ( | μ 21 | 8 Γ 0 2 Γ 21 4 ) I 2 I p
I s = ( ω | μ 21 | 2 2 Γ 21 c 0 ) 2 ( Δ N 0 l ) 2 ( 2 I I sat ) 2 I p ,
I sat = Γ 0 Γ 21 2 c 0 2 | μ 21 | 2 ,
I s = ( ω 2 128 c 0 ) ( Δ N 0 l ) 2 ( Γ 0 | μ 21 | 2 Γ 21 ) I p I .

Metrics