Abstract

Longitudinal segmented helicoidal eigenstates in laser resonators, with different field distributions of either identical or opposite handedness, are studied theoretically and experimentally. The eigenmodes and frequencies are derived in the framework of the Jones-matrix formalism. Double helices can be applied to birefringence compensation for helicoidal waves. A novel Fabry–Perot laser cavity is realized in which both spatial hole-burning suppression and birefringence compensation are simultaneously achieved.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Evtuhov and A. E. Siegman, “A ‘twisted-mode’ technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142–143 (1965).
    [CrossRef]
  2. A. Kastler, “Champ lumineux stationnaire á structure hélicoïdale dans une cavité laser,” C. R. Acad. Sci. Paris B 271, 999 (1970).
  3. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 235–239 (1972).
    [CrossRef]
  4. D. J. De Jong and D. Andreou, “An Nd:YAG laser whose active medium experiences no hole-burning effects,” Opt. Commun. 22, 138–141 (1977).
    [CrossRef]
  5. F. Bretenaker and A. Le Floch, “Nonlinear intensity effects in a laser generating the three main standing waves,” Phys. Rev. A 43, 3704–3709 (1991).
    [CrossRef] [PubMed]
  6. K. Wallmeroth and P. Peuser, “High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
    [CrossRef]
  7. C. S. Adams, J. Vorberg, and J. Mlynek, “Single-frequency operation of a diode-pumped lanthanum–neodymium–hexaaluminate laser by using a twisted-mode cavity,” Opt. Lett. 18, 420–422 (1993).
    [CrossRef] [PubMed]
  8. O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
    [CrossRef]
  9. W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, New York, 1976), pp. 350–396.
  10. H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
    [CrossRef]
  11. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
    [CrossRef]
  12. W. Koechner, “Thermal lensing in Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970).
    [CrossRef] [PubMed]
  13. A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
    [CrossRef]
  14. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  15. J. Richards, “Birefringence compensation in polarization coupled lasers,” Appl. Opt. 26, 2514–2517 (1987).
    [CrossRef] [PubMed]
  16. A Lakhtakia, “Viktor Trkal, Beltrami fields, and Trkalian flows,” Czech. J. Phys. 44, 89–96 (1994).
    [CrossRef]
  17. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
    [CrossRef]
  18. H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry–Perot étalon,” J. Opt. Soc. Am. A 11, 754–758 (1994).
    [CrossRef]
  19. I. J. Lalov and A. I. Miteva, “Optically active Fabry–Perotétalon,” J. Mod. Opt. 38, 395–411 (1991).
    [CrossRef]
  20. A. Lakhtakia, ed., Natural Optical Activity, SPIE Milestone Vol. 15 (Optical Engineering, Bellingham, Wash., 1990).
  21. H. Greenstein, “Some properties of a Zeeman laser with anisotropic mirrors,” Phys. Rev. 178, 585 (1969).
    [CrossRef]
  22. H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, the Netherlands, 1966).
  23. A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x–y-type loss anisotropies,” Phys. Rev. A 4, 290–295 (1971).
    [CrossRef]
  24. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 9.
  25. F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
    [CrossRef]
  26. R. J. Koshel and I. A. Walmsley, “Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics,” Appl. Opt. 32, 1517–1527 (1993).
    [CrossRef] [PubMed]
  27. P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

1994 (2)

1993 (3)

1992 (1)

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

1991 (2)

I. J. Lalov and A. I. Miteva, “Optically active Fabry–Perotétalon,” J. Mod. Opt. 38, 395–411 (1991).
[CrossRef]

F. Bretenaker and A. Le Floch, “Nonlinear intensity effects in a laser generating the three main standing waves,” Phys. Rev. A 43, 3704–3709 (1991).
[CrossRef] [PubMed]

1989 (2)

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
[CrossRef]

1988 (1)

K. Wallmeroth and P. Peuser, “High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

1987 (2)

A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
[CrossRef]

J. Richards, “Birefringence compensation in polarization coupled lasers,” Appl. Opt. 26, 2514–2517 (1987).
[CrossRef] [PubMed]

1977 (1)

D. J. De Jong and D. Andreou, “An Nd:YAG laser whose active medium experiences no hole-burning effects,” Opt. Commun. 22, 138–141 (1977).
[CrossRef]

1972 (1)

A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 235–239 (1972).
[CrossRef]

1971 (2)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x–y-type loss anisotropies,” Phys. Rev. A 4, 290–295 (1971).
[CrossRef]

1970 (3)

A. Kastler, “Champ lumineux stationnaire á structure hélicoïdale dans une cavité laser,” C. R. Acad. Sci. Paris B 271, 999 (1970).

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

W. Koechner, “Thermal lensing in Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970).
[CrossRef] [PubMed]

1969 (1)

H. Greenstein, “Some properties of a Zeeman laser with anisotropic mirrors,” Phys. Rev. 178, 585 (1969).
[CrossRef]

1965 (1)

Adams, C. S.

Andreou, D.

D. J. De Jong and D. Andreou, “An Nd:YAG laser whose active medium experiences no hole-burning effects,” Opt. Commun. 22, 138–141 (1977).
[CrossRef]

Balcou, Ph.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Bretenaker, F.

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

F. Bretenaker and A. Le Floch, “Nonlinear intensity effects in a laser generating the three main standing waves,” Phys. Rev. A 43, 3704–3709 (1991).
[CrossRef] [PubMed]

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Brillet, A.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Chiquier, J.-M.

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

Cregut, O.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Davit, J.

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

De Jong, D. J.

D. J. De Jong and D. Andreou, “An Nd:YAG laser whose active medium experiences no hole-burning effects,” Opt. Commun. 22, 138–141 (1977).
[CrossRef]

De Lang, H.

H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, the Netherlands, 1966).

de Wit, M.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Draegert, A.

A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 235–239 (1972).
[CrossRef]

Eicher, H. J.

H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Evtuhov, V.

Greenstein, H.

H. Greenstein, “Some properties of a Zeeman laser with anisotropic mirrors,” Phys. Rev. 178, 585 (1969).
[CrossRef]

Gusev, A. A.

A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
[CrossRef]

Haase, A.

H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Jacob, D.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Kastler, A.

A. Kastler, “Champ lumineux stationnaire á structure hélicoïdale dans une cavité laser,” C. R. Acad. Sci. Paris B 271, 999 (1970).

Koechner, W.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

W. Koechner, “Thermal lensing in Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970).
[CrossRef] [PubMed]

W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, New York, 1976), pp. 350–396.

Koshel, R. J.

Kubecek, V.

A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
[CrossRef]

Lagoutte, P.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Lakhtakia, A

A Lakhtakia, “Viktor Trkal, Beltrami fields, and Trkalian flows,” Czech. J. Phys. 44, 89–96 (1994).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
[CrossRef]

Lalov, I. J.

I. J. Lalov and A. I. Miteva, “Optically active Fabry–Perotétalon,” J. Mod. Opt. 38, 395–411 (1991).
[CrossRef]

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 9.

Le Floch, A.

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

F. Bretenaker and A. Le Floch, “Nonlinear intensity effects in a laser generating the three main standing waves,” Phys. Rev. A 43, 3704–3709 (1991).
[CrossRef] [PubMed]

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x–y-type loss anisotropies,” Phys. Rev. A 4, 290–295 (1971).
[CrossRef]

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Le Naour, R.

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x–y-type loss anisotropies,” Phys. Rev. A 4, 290–295 (1971).
[CrossRef]

Ling, H. Y.

Man, C. N.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Menhert, A.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Menzel, R.

H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Miteva, A. I.

I. J. Lalov and A. I. Miteva, “Optically active Fabry–Perotétalon,” J. Mod. Opt. 38, 395–411 (1991).
[CrossRef]

Mlynek, J.

Peuser, P.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

K. Wallmeroth and P. Peuser, “High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Rice, D. K.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

Richards, J.

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 9.

Schmitt, N. P.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Scott, W. C.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Scully, M. O.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 9.

Shoemaker, D.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Siegman, A. E.

Siemoneit, A.

H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Sochor, V.

A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
[CrossRef]

Varadan, V. K.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
[CrossRef]

Varadan, V. V.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
[CrossRef]

Vorberg, J.

Wallmeroth, K.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

K. Wallmeroth and P. Peuser, “High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Walmsley, I. A.

Zeller, P.

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

C. R. Acad. Sci. Paris B (1)

A. Kastler, “Champ lumineux stationnaire á structure hélicoïdale dans une cavité laser,” C. R. Acad. Sci. Paris B 271, 999 (1970).

Czech. J. Phys. (1)

A Lakhtakia, “Viktor Trkal, Beltrami fields, and Trkalian flows,” Czech. J. Phys. 44, 89–96 (1994).
[CrossRef]

Electron. Lett. (1)

K. Wallmeroth and P. Peuser, “High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. QE-8, 235–239 (1972).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

F. Bretenaker, A. Le Floch, J. Davit, and J.-M. Chiquier, “One- and two-eigenstate stability domains in laser systems,” IEEE J. Quantum Electron. 28, 348–354 (1992).
[CrossRef]

Int. J. Eng. Sci. (1)

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,” Int. J. Eng. Sci. 27, 1267–1274 (1989).
[CrossRef]

J. Mod. Opt. (1)

I. J. Lalov and A. I. Miteva, “Optically active Fabry–Perotétalon,” J. Mod. Opt. 38, 395–411 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

H. J. Eicher, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Opt. Commun. (2)

A. A. Gusev, V. Kubecek, and V. Sochor, “Thermal effects in an active element of a room temperature LiF:F2−laser,” Opt. Commun. 61, 219–223 (1987).
[CrossRef]

D. J. De Jong and D. Andreou, “An Nd:YAG laser whose active medium experiences no hole-burning effects,” Opt. Commun. 22, 138–141 (1977).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

O. Cregut, C. N. Man, D. Shoemaker, A. Brillet, A. Menhert, P. Peuser, N. P. Schmitt, P. Zeller, and K. Wallmeroth, “18W single-frequency operation of an injection-locked, cw, Nd:YAG laser,” Phys. Lett. A 140, 294–298 (1989).
[CrossRef]

Phys. Rev. (1)

H. Greenstein, “Some properties of a Zeeman laser with anisotropic mirrors,” Phys. Rev. 178, 585 (1969).
[CrossRef]

Phys. Rev. A (2)

A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x–y-type loss anisotropies,” Phys. Rev. A 4, 290–295 (1971).
[CrossRef]

F. Bretenaker and A. Le Floch, “Nonlinear intensity effects in a laser generating the three main standing waves,” Phys. Rev. A 43, 3704–3709 (1991).
[CrossRef] [PubMed]

Other (5)

W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, New York, 1976), pp. 350–396.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 9.

H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, the Netherlands, 1966).

A. Lakhtakia, ed., Natural Optical Activity, SPIE Milestone Vol. 15 (Optical Engineering, Bellingham, Wash., 1990).

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, “Optical activity measurements using bihelicoidal laser eigenstates,” Appl. Opt. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Polarization distributions of (a) a simple helicoidal laser eigenstate, (b) a double helix (two segments of identical handedness), and (c) a bihelicoidal state (two segments of opposite handednesses). The polarization vector on the right-hand side of (a) and (b) makes an angle of 45° with the horizontal.

Fig. 2
Fig. 2

Experimental setup used to observe the eigenstate frequencies of bihelices. M1, M2, cavity end mirrors; P, linear polarizer; D1, D2, detectors; CA, Fabry–Perot confocal analyzer; PZT, piezoelectric transducers; Dϕ, diaphragm. α and β denote the angles with the X axis of the reference eigenaxis for the HWP and the last QWP respectively; the active medium may be located in either position 1 or 2.

Fig. 3
Fig. 3

(a) Output intensity, transmitted through a 0° linear polarizer, versus laser frequency, obtained by variation of the cavity length. (b) Output intensity transmitted through a 90° linear polarizer. The two eigenstates oscillate simultaneously in a 33-MHz frequency range (coupling coefficient C < 1) owing to spatial hole burning in the active medium interacting with linearly polarized standing waves (position 1 in Fig. 2). (c) Output intensity transmitted through a 0° linear polarizer. (d) Output intensity transmitted through a 90° linear polarizer. The two eigenstates are in vectorial bistability (C > 1) owing to the lack of spatial hole-burning in the active medium interacting with helicoidally polarized standing waves (position 2 in Fig. 2).

Fig. 4
Fig. 4

Bihelicoidal eigenstates frequency analysis in a confocal Fabry–Perot analyzer; a single mode of the analyzer is represented. (a) Frequency shift as a function of the HWP angle α, with the QWP angle β being kept constant. (b) Frequency shift as a function of the QWP angle β, with the HWP angle α being kept constant.

Fig. 5
Fig. 5

Experimental setup used to demonstrate distributed birefringence compensation in circular polarization. R, rotator with 90° optical activity; P, circular polarizer; A, circular analyzer; D, detector scanning the beam profile.

Fig. 6
Fig. 6

(a) Dashed curve 1, Gaussian beam intensity profile transmitted through parallel circular analyzer and polarizer (without the 90°optical activity). Solid curve 2, Gaussian beam intensity profile transmitted through perpendicular circular analyzer and polarizer (without the 90deg; optical activity). (b) Dashed curve 3, Gaussian beam intensity profile transmitted through parallel circular analyzer and polarizer (with the 90° optical activity). Solid curve 4, Gaussian beam intensity profile transmitted through perpendicular circular analyzer and polarizer (with the 90° optical activity).

Fig. 7
Fig. 7

Setup for a cw Nd:YAG laser in a double-helix configuration. M’s, mirrors; R, rotator.

Fig. 8
Fig. 8

Laser mode frequency analysis by a hemispherical confocal Fabry–Perot analyzer. (a) Multimode spectrum obtained with a HWP between the rods. (b) Spectrum obtained with a 90° rotator used to compensate for distributed birefringence. The second peak corresponds to the following mode of the Fabry–Perot analyzer, whose free spectral range is 3.6 GHz.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

M = L λ / 4 45 ° L λ / 4 β L λ / 4 β L λ / 4 45 ° ,
M = R π / 4 L 3 λ / 4 0 R 2 β ( π / 2 ) L λ / 4 0 R π / 4 = [ exp [ i ( 2 β + π / 2 ) ] 0 0 exp [ i ( 2 β + π / 2 ) ] ] .
ν ± = c 2 L [ q ± ( 1 4 + β π ) ] ,
M = L λ / 4 45 ° R φ L λ / 4 β L λ / 4 β R φ L λ / 4 45 ° .
ν ± = c 2 L [ q ± ( 1 4 + β + φ π ) ] .
M = L λ / 4 45 ° L λ / 2 α L λ / 4 β L λ / 4 β L λ / 2 α L λ / 4 45 ° .
L λ / 2 γ = R γ L λ / 2 0 R γ ,
L λ / 2 0 R γ = R γ L λ / 2 0 ,
M = R 45 ° L 3 λ / 4 0 R ( 4 α 2 β + π / 2 ) L λ / 4 0 R 45 ° .
ν ± = c 2 L [ q ± ( 2 α β π 1 4 ) ] .
C = θ x y 2 β x β y ,
Δ n = ( 1 / 2 ) n 0 3 χ r 2 ,
B ( r , θ ) = R ρ 1 L λ / m 0 R ρ = [ cos 2 ( ρ ) exp ( i π / m ) + sin 2 ( ρ ) exp ( i π / m ) 2 i cos ( ρ ) sin ( ρ ) sin ( π / m ) 2 cos ( ρ ) sin ( ρ ) sin ( π / m ) sin 2 ( ρ ) exp ( i π / m ) + cos 2 ( ρ ) exp ( i π / m ) ] ,
BSB = S ,
B = exp ( i ζ σ 3 ) ,
σ 3 = [ 1 0 0 1 ] .
σ 3 S + S σ 3 = 0 .
S δ = [ 0 exp ( i δ ) exp ( i δ ) 0 ] ,

Metrics