Abstract

An enhancement of the beam coupling in the near infrared is observed in Ba12TiO20 preexposed to visible light. The experiments indicate that photorefractive nonlinearity in this spectral range is determined by the diffusion charge transport. To explain the oscillations in the transmitted beam intensities we consider a model with two types of moving species (electrons and holes) and several charge traps. It is shown that the optical excitation energy for deep centers is roughly 2 eV.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).
    [CrossRef]
  2. S. I. Stepanov and M. P. Petrov, in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 9.
  3. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.
  4. S. L. Sochava and S. I. Stepanov, Pis’ma Zh. Tekh. Fiz. 15, 34 (1989).
  5. S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.
  6. A. A. Kamshilin and M. P. Petrov, Sov. Phys. Solid State 23, 3110 (1981).
  7. V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).
  8. G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
    [CrossRef]
  9. K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
    [CrossRef]
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).
  11. M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1987).
    [CrossRef]
  12. V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).
  13. V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).
  14. S. Zyvkova and M. Miteva, J. Appl. Phys. 68, 3099 (1990).
    [CrossRef]
  15. Similar effects of the antiphase grating formation were considered in Refs. 16 and 17 for crystals with ST’s.
  16. P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  17. G. Montemezzani, M. Zgonik, and P. Gunter, J. Opt. Soc. Am. B 10, 171 (1993).
    [CrossRef]
  18. A. E. Attard, J. Appl. Phys. 69, 44 (1991).
    [CrossRef]

1993 (1)

1991 (3)

A. E. Attard, J. Appl. Phys. 69, 44 (1991).
[CrossRef]

P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

1990 (1)

S. Zyvkova and M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

1989 (1)

S. L. Sochava and S. I. Stepanov, Pis’ma Zh. Tekh. Fiz. 15, 34 (1989).

1987 (1)

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1987).
[CrossRef]

1986 (2)

G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
[CrossRef]

V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).

1983 (2)

V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).

V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).

1981 (1)

A. A. Kamshilin and M. P. Petrov, Sov. Phys. Solid State 23, 3110 (1981).

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

1976 (1)

J.-P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).
[CrossRef]

Astratov, V. N.

V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).

V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).

Attard, A. E.

A. E. Attard, J. Appl. Phys. 69, 44 (1991).
[CrossRef]

Brun, A.

G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
[CrossRef]

Buse, K.

K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Detinenko, V. A.

V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).

Eason, R. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Garrett, M. H.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Gousev, V. A.

V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).

Gunter, P.

Holtmann, L.

K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Huignard, J.-P.

J.-P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).
[CrossRef]

Ilinski, A. V.

V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).

Kamshilin, A. A.

A. A. Kamshilin and M. P. Petrov, Sov. Phys. Solid State 23, 3110 (1981).

Kiselev, V. A.

V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).

Klein, M. B.

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1987).
[CrossRef]

Kraetzig, E.

K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

Lesaux, G.

G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
[CrossRef]

Llinski, A. V.

V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).

Mahgerefteh, D.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

Melnikov, M. B.

V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).

Micheron, F.

J.-P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).
[CrossRef]

Miteva, M.

S. Zyvkova and M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

Montemezzani, G.

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

Petrov, M. P.

A. A. Kamshilin and M. P. Petrov, Sov. Phys. Solid State 23, 3110 (1981).

S. I. Stepanov and M. P. Petrov, in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 9.

Roosen, G.

G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Rytz, D.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Shcherbin, K. V.

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

Slyussarenko, S. S.

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

Sochava, S. L.

S. L. Sochava and S. I. Stepanov, Pis’ma Zh. Tekh. Fiz. 15, 34 (1989).

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

Sokolov, A. P.

V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

Stepanov, S. I.

S. L. Sochava and S. I. Stepanov, Pis’ma Zh. Tekh. Fiz. 15, 34 (1989).

S. I. Stepanov and M. P. Petrov, in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 9.

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

Tayebati, P.

Valley, G. C.

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1987).
[CrossRef]

Vinetski, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

Zgonik, M.

Zyvkova, S.

S. Zyvkova and M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

J.-P. Huignard and F. Micheron, Appl. Phys. Lett. 29, 591 (1976).
[CrossRef]

Avtometriia (1)

V. A. Gousev, V. A. Detinenko, and A. P. Sokolov, Avtometriia 5, 34 (1983).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 4901 (1979).

J. Appl. Phys. (3)

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1987).
[CrossRef]

S. Zyvkova and M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

A. E. Attard, J. Appl. Phys. 69, 44 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

G. Lesaux, G. Roosen, and A. Brun, Opt. Commun. 56, 374 (1986).
[CrossRef]

K. Buse, L. Holtmann, and E. Kraetzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Pis’ma Zh. Tekh. Fiz. (1)

S. L. Sochava and S. I. Stepanov, Pis’ma Zh. Tekh. Fiz. 15, 34 (1989).

Sov. Phys. Solid State (2)

A. A. Kamshilin and M. P. Petrov, Sov. Phys. Solid State 23, 3110 (1981).

V. N. Astratov, A. V. Ilinski, and M. B. Melnikov, Sov. Phys. Solid State 25, 2163 (1983).

Soviet Phys. Solid State (1)

V. N. Astratov, A. V. Llinski, and V. A. Kiselev, Soviet Phys. Solid State 28, 3438 (1986).

Other (4)

Similar effects of the antiphase grating formation were considered in Refs. 16 and 17 for crystals with ST’s.

S. G. Odoulov, S. S. Slyussarenko, S. L. Sochava, S. I. Stepanov, and K. V. Shcherbin, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices II (Société Francaise d’Optique, Aussois, France, 1990), pp. 314–317.

S. I. Stepanov and M. P. Petrov, in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 9.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, in Technical Digest of Meeting on Photorefractive Materials, Effects, and Devices IV (Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine, 1993), pp. 51–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement. PD1, PD2, photodiodes; L, white-light source; S, shutter; BS1, BS2, beam splitters; M1, M2, mirrors; Is, Ip are the signal and the pump beams, respectively.

Fig. 2
Fig. 2

Temporal dependences of the intensity of the output signal beam. The signal beam is switched on at t = 0, and the pump beam is switched on at t = 10 s. (a) The delay time in the dark after exposure to visible light and before recording in the infrared is 60 h, 18 h, and 20 s for curves 1, 2, and 3, respectively. (b) Curves + and − correspond to two opposite orientations of the sample (sample rotated to 180° with the rotation axis [1 1 ¯0]; the middle curve represents the self-induced change of the crystal transparency in the infrared after a 5-min pre-exposure to white light.

Fig. 3
Fig. 3

Rate of intensity change of the output signal beam D (a) as a function of the preexposure time Δt1 and (b) as a function of the time delay after preexposure to white light when the crystal is illuminated by only the signal beam Δt2.

Fig. 4
Fig. 4

(a) Gain factor Γ as a function of the grating spacing Λ and (b) the same dependence linearized in special coordinates (see text) for the evaluation of the Debye screening length.

Fig. 5
Fig. 5

Energy diagram for the model considered here. The double-line arrows show the photoexcitation, whereas the single-line arrows correspond to the electron (solid arrows) and the hole (dashed arrows) transitions, respectively. (a) White-light illumination, (b) infrared illumination. CB and VB denote conduction band and valence band, respectively.

Fig. 6
Fig. 6

Modeling of beam-coupling dynamics ΔIs(t)/Is(0) by four exponents [see Eq. (2)] with the following fitting parameters: a1 = 0.094, a2 = −0.075, a3 = 0.105, a4 = −0.083, τ1 = 0.3 s, τ2 = 9 s, τ3 = 80 s, τ4 = 320 s.

Fig. 7
Fig. 7

Temporal dependences of the intensity of the output signal beam when the sample is continuously illuminated by white light during infrared recording.

Fig. 8
Fig. 8

Temporal dependences of the intensity of the output signal beam (a) without interruption of recording and (b) with interruption of recording beams for a time required for going from the first maximum to the first minimum.

Fig. 9
Fig. 9

Light-induced absorption Δα at λ = 1.06 μm as a function of the cutoff wavelength of preexposure light.

Fig. 10
Fig. 10

Absorption spectrum of the BTO crystal.

Fig. 11
Fig. 11

Rates of intensity change of the signal beam as a function of the cutoff wavelength in preexposure light. The circles denote the first rise in intensity, the triangles denote the first intensity decrease, and the squares denote the second rise in intensity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N T = 4 π 2 ɛ ɛ 0 k T / ( l s e ) 2 ,
Δ I s ( t ) / I s ( 0 ) ~ Γ l ~ Δ n ~ i = 1 4 a i [ 1 - exp ( - t / τ i ) ] ,

Metrics