Abstract

We determine, by a photoinduced light scattering study, that the increase of photorefractive sensitivity of the proton exchange waveguides in lithium niobate crystals is more than 3 orders of magnitude as a result of copper doping under certain conditions. This increase is determined to be due to the nonphotovoltaic contribution to photorefraction with a short responsiveness time.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Wan, Y. Yuan, and G. Assanto, Opt. Commun. 74, 361 (1990).
    [CrossRef]
  2. A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
    [CrossRef]
  3. D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
    [CrossRef]
  4. F. Ito and K. Kitayama, Appl. Phys. Lett. 59, 1932 (1991).
    [CrossRef]
  5. R. Goring, A. Rasch, and W. Karthe, in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
    [CrossRef]
  6. C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).
  7. S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
    [CrossRef]
  8. B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
    [CrossRef]
  9. H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
    [CrossRef]
  10. M. Nippus and R. Claus, Z. Naturforsch. Teil A 33, 924 (1978).
  11. S. M. Kostritskii, Ferroelectrics 83, 75 (1988).
    [CrossRef]
  12. R. A. Becker and P. C. Williamson, Appl. Phys. Lett. 47, 1024 (1985).
    [CrossRef]
  13. T. Fujiwara, S. Sato, and A. Mori, Appl. Phys. Lett. 54, 975 (1989).
    [CrossRef]
  14. T. Fujiwara, A. Terashima, and A. Mori, Appl. Phys. Lett. 55, 2718 (1989).
    [CrossRef]
  15. R. A. Becker, in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 578, 12 (1985).
    [CrossRef]
  16. R. Goring, Y.-L. Zhan, and S. Steinberg, Appl. Phys. A 55, 97 (1992).
    [CrossRef]
  17. M. M. Howerton and W. K. Burns, J. Lightwave Technol. 10, 142 (1992).
    [CrossRef]
  18. O. Althoff and E. Kratzig in Nonlinear Optical Materials III, P. Guenther, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1273, 12 (1990).
    [CrossRef]
  19. F. Jermann and E. Kratzig, Appl. Phys. A 55, 114 (1992).
    [CrossRef]
  20. V. V. Lemanov and B. V. Suharev, Sov. Phys. JTP Lett. 9, 505 (1983).
  21. L. B. Schein, P. J. Cressman, and L. E. Cross, J. Appl. Phys. 49, 798 (1978).
    [CrossRef]
  22. M. Ito and H. Takei, Jpn. J. Appl. Phys. 28, 144 (1989).
    [CrossRef]

Althoff, O.

O. Althoff and E. Kratzig in Nonlinear Optical Materials III, P. Guenther, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1273, 12 (1990).
[CrossRef]

Assanto, G.

L. Wan, Y. Yuan, and G. Assanto, Opt. Commun. 74, 361 (1990).
[CrossRef]

Bartholomaus, T.

D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
[CrossRef]

Becker, R. A.

R. A. Becker and P. C. Williamson, Appl. Phys. Lett. 47, 1024 (1985).
[CrossRef]

R. A. Becker, in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 578, 12 (1985).
[CrossRef]

Burns, W. K.

M. M. Howerton and W. K. Burns, J. Lightwave Technol. 10, 142 (1992).
[CrossRef]

Claus, R.

M. Nippus and R. Claus, Z. Naturforsch. Teil A 33, 924 (1978).

Cressman, P. J.

L. B. Schein, P. J. Cressman, and L. E. Cross, J. Appl. Phys. 49, 798 (1978).
[CrossRef]

Cross, L. E.

L. B. Schein, P. J. Cressman, and L. E. Cross, J. Appl. Phys. 49, 798 (1978).
[CrossRef]

Dischler, B.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
[CrossRef]

Engelmann, H.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Fink, R.

D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
[CrossRef]

Fujiwara, T.

T. Fujiwara, A. Terashima, and A. Mori, Appl. Phys. Lett. 55, 2718 (1989).
[CrossRef]

T. Fujiwara, S. Sato, and A. Mori, Appl. Phys. Lett. 54, 975 (1989).
[CrossRef]

Gonser, U.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Goring, R.

R. Goring, Y.-L. Zhan, and S. Steinberg, Appl. Phys. A 55, 97 (1992).
[CrossRef]

R. Goring, A. Rasch, and W. Karthe, in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
[CrossRef]

Herrington, J. R.

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
[CrossRef]

Howerton, M. M.

M. M. Howerton and W. K. Burns, J. Lightwave Technol. 10, 142 (1992).
[CrossRef]

Igolinskaya, M. A.

S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
[CrossRef]

Ito, F.

F. Ito and K. Kitayama, Appl. Phys. Lett. 59, 1932 (1991).
[CrossRef]

Ito, M.

M. Ito and H. Takei, Jpn. J. Appl. Phys. 28, 144 (1989).
[CrossRef]

Jermann, F.

F. Jermann and E. Kratzig, Appl. Phys. A 55, 114 (1992).
[CrossRef]

Karthe, W.

R. Goring, A. Rasch, and W. Karthe, in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
[CrossRef]

Keune, W.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Kip, D.

D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
[CrossRef]

Kitayama, K.

F. Ito and K. Kitayama, Appl. Phys. Lett. 59, 1932 (1991).
[CrossRef]

Kolesnikov, O. M.

S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
[CrossRef]

S. M. Kostritskii, Ferroelectrics 83, 75 (1988).
[CrossRef]

Kratzig, E.

F. Jermann and E. Kratzig, Appl. Phys. A 55, 114 (1992).
[CrossRef]

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
[CrossRef]

Kurz, H.

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
[CrossRef]

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Lemanov, V. V.

V. V. Lemanov and B. V. Suharev, Sov. Phys. JTP Lett. 9, 505 (1983).

Mori, A.

T. Fujiwara, A. Terashima, and A. Mori, Appl. Phys. Lett. 55, 2718 (1989).
[CrossRef]

T. Fujiwara, S. Sato, and A. Mori, Appl. Phys. Lett. 54, 975 (1989).
[CrossRef]

Nippus, M.

M. Nippus and R. Claus, Z. Naturforsch. Teil A 33, 924 (1978).

Novikov, A. D.

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

Odoulov, S. G.

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

Rasch, A.

R. Goring, A. Rasch, and W. Karthe, in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
[CrossRef]

Rauber, A.

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
[CrossRef]

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Sato, S.

T. Fujiwara, S. Sato, and A. Mori, Appl. Phys. Lett. 54, 975 (1989).
[CrossRef]

Schein, L. B.

L. B. Schein, P. J. Cressman, and L. E. Cross, J. Appl. Phys. 49, 798 (1978).
[CrossRef]

Shandarov, S. M.

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

Shandarov, V. M.

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

Shan-darov, E. S.

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

Shang, M.-R.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Steinberg, S.

R. Goring, Y.-L. Zhan, and S. Steinberg, Appl. Phys. A 55, 97 (1992).
[CrossRef]

Suharev, B. V.

V. V. Lemanov and B. V. Suharev, Sov. Phys. JTP Lett. 9, 505 (1983).

Sutulin, S. N.

S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
[CrossRef]

Takei, H.

M. Ito and H. Takei, Jpn. J. Appl. Phys. 28, 144 (1989).
[CrossRef]

Terashima, A.

T. Fujiwara, A. Terashima, and A. Mori, Appl. Phys. Lett. 55, 2718 (1989).
[CrossRef]

Wan, L.

L. Wan, Y. Yuan, and G. Assanto, Opt. Commun. 74, 361 (1990).
[CrossRef]

Wei, J.-N.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Wen, J.-K.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Williamson, P. C.

R. A. Becker and P. C. Williamson, Appl. Phys. Lett. 47, 1024 (1985).
[CrossRef]

Wu, Z.-K.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Yuan, Y.

L. Wan, Y. Yuan, and G. Assanto, Opt. Commun. 74, 361 (1990).
[CrossRef]

Zhan, Y.-L.

R. Goring, Y.-L. Zhan, and S. Steinberg, Appl. Phys. A 55, 97 (1992).
[CrossRef]

Zhang, C.-P.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Zhang, G.-Y.

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

Other

L. Wan, Y. Yuan, and G. Assanto, Opt. Commun. 74, 361 (1990).
[CrossRef]

A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shan-darov, and S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
[CrossRef]

D. Kip, R. Fink, T. Bartholomaus, and E. Kratzig, Opt. Commun. 95, 33 (1993).
[CrossRef]

F. Ito and K. Kitayama, Appl. Phys. Lett. 59, 1932 (1991).
[CrossRef]

R. Goring, A. Rasch, and W. Karthe, in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
[CrossRef]

C.-P. Zhang, M.-R. Shang, G.-Y. Zhang, Z.-K. Wu, J.-K. Wen, and J.-N. Wei, Acta Phys. Sin. Abstr. 38, 1036 (1989).

S. M. Kostritskii, O. M. Kolesnikov, S. N. Sutulin, and M. A. Igolinskaya, Ferroelectr. Lett. 13, 55 (1991).
[CrossRef]

B. Dischler, J. R. Herrington, A. Rauber, and H. Kurz, Solid State Commun. 14, 1233 (1974).
[CrossRef]

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

M. Nippus and R. Claus, Z. Naturforsch. Teil A 33, 924 (1978).

S. M. Kostritskii, Ferroelectrics 83, 75 (1988).
[CrossRef]

R. A. Becker and P. C. Williamson, Appl. Phys. Lett. 47, 1024 (1985).
[CrossRef]

T. Fujiwara, S. Sato, and A. Mori, Appl. Phys. Lett. 54, 975 (1989).
[CrossRef]

T. Fujiwara, A. Terashima, and A. Mori, Appl. Phys. Lett. 55, 2718 (1989).
[CrossRef]

R. A. Becker, in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 578, 12 (1985).
[CrossRef]

R. Goring, Y.-L. Zhan, and S. Steinberg, Appl. Phys. A 55, 97 (1992).
[CrossRef]

M. M. Howerton and W. K. Burns, J. Lightwave Technol. 10, 142 (1992).
[CrossRef]

O. Althoff and E. Kratzig in Nonlinear Optical Materials III, P. Guenther, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1273, 12 (1990).
[CrossRef]

F. Jermann and E. Kratzig, Appl. Phys. A 55, 114 (1992).
[CrossRef]

V. V. Lemanov and B. V. Suharev, Sov. Phys. JTP Lett. 9, 505 (1983).

L. B. Schein, P. J. Cressman, and L. E. Cross, J. Appl. Phys. 49, 798 (1978).
[CrossRef]

M. Ito and H. Takei, Jpn. J. Appl. Phys. 28, 144 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Scheme of the experimental measurements of the IR spectra: pathway of the IR radiation for absorption measurements (1–1) and for reflection measurements (2–2); hPE, waveguide thickness; h1, thickness of the Cu-doped part; h2, transition layer; h3, thickness of the immersed PE waveguide. Two possible cases of Cu distribution: (b) sandwich profile, (c) step profile, CH+, CH+, proton concentration distributions before and after CD.

Fig. 2
Fig. 2

IR absorption spectra, as a function of absorbance dependencies on ω, for Z-cut wafers: curve 1, results after type-1 treatment for 6 h (PE-waveguide thickness, 2 μm) in sample LN1; curve 2, results of treatment in sample LN2 are the same as on sample LN1 after additional CD with a Cu2O content in the melt of 2 mol. % for 20 min; curve 3, sample LN3, CD for 60 min.

Fig. 3
Fig. 3

IR-reflection spectra, as a function of reflection coefficient R dependencies on ω: curves a, b, for sample LN2 [case given in Fig. 1(b); see also Fig. 2]; curves c, d, for sample LN3 [case given in Fig. 1(c); see also Fig. 2]. These spectra were measured at two values of the reflection angle: curves a, c, α = 20°; curves b, d, α = 70°. When IR reflection is being measured, the photometric depth decreases as angle α increases. It is well known7 that the OH vibration frequency decreases with a reduction in the proton concentration.

Fig. 4
Fig. 4

Spectral dependencies of absorbance in the optical region: curve 1, results for undoped PE-waveguide sample LN1 (see Fig. 2); curve 2, results for sample LN2; curve 3, results for sample LN3; curve 4, results for sample LN4, which are the same as those for sample LN3 after an additional type-3 treatment for 10 min.

Fig. 5
Fig. 5

Differential optical spectra: curve 1, (Cu-volume-doped LN)/(pure LN); curve 2, [sample LN3 (see Fig. 4)]/(pure LN); curve 3, [sample LN4 (see Fig. 4)]/(pure LN).

Fig. 6
Fig. 6

Experimental scheme for PLS investigation: ki, wave vector for incident laser irradiation, ks, detected part of the Raman scattered irradiation, S, entrance slit of the spectrometer, L, lens, D, horizontal-slit diaphragm.

Fig. 7
Fig. 7

Raman intensity kinetics for CDPE waveguides in (104)-cut wafers with J = 1.2 W/cm2 and different Cu concentrations: 1 at.% < C1 < C2 < C3 < C4 at.%.

Fig. 8
Fig. 8

Raman intensity kinetics in curve a, wafer bulk, curve b, CDPE waveguides after type-3 treatment for 10 min, curve c, for 50 min.

Fig. 9
Fig. 9

Experimental dependencies for the characteristic time τex (curves 1, 2, 4) on various Cu concentrations in waveguides: 1 at. % < C1 < C2 < C4 < 4 at. %(see Fig. 7). The dashed curve denotes the calculated dependency for the first contribution with τ1, [Eq. (6)], the dashed–dotted curve denotes that for the second contribution with τ2.

Fig. 10
Fig. 10

Experimental Raman intensity kinetics (PLS): curve 1, Z-cut wafers, with kiz, C1 = CCu = 4 at. %, J ≈ 1.5 W/cm2; curve 2, Y-cut wafers, with ki || z, C2 < C1, J2 < J1; curve 3, Y-cut wafers, with kiz, C3 = C1, J3 < J2, J3 ≈ 0.4 W/cm2; curve 4, Z-cut wafers, with kiz, C4C1, C4 = 0.2 at. %, J4 < J1, J4 ≈ 1.2 W/cm2; Δt, unilluminated period.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I satur + ( I 0 - I satur ) exp ( - t / τ ) ,
I = I 0 1 1 + β eff / Δ β sl ,             β eff = arctan ( Δ n l d ) ,
Δ = Δ I I 0 = Δ n max l / ( d Δ β sl ) 1 + Δ n max l / ( d Δ β sl ) .
( Δ n max ) CD = ( Δ n max ) PE Δ CD ( 1 - Δ PE ) / [ Δ PE ( 1 - Δ CD ) ] .
S ( t 0 ) = Δ n max / J τ , S CD / S PE = ( Δ n max ) CD τ PE / ( Δ n max ) PE τ CD .
Δ n = 0.5 n 3 r eff { E sc 0 [ 1 - exp ( - t / τ 1 ) ] + E p 0 [ 1 - exp ( - t / τ 2 ) ] } ,
E sc ( t ) ~ E p ( t ) ~ exp ( - t σ d / ɛ ɛ 0 ) .
I ( t ) = I 0 + ( Δ I ) [ 1 - exp ( - t / τ ) ] ,             τ = f ( C Cu + ; C H + ) ,

Metrics