Abstract

We consider induced-grating autocorrelation (IGA) in a slowly responding medium and study three possible geometries (two-beam coupling, three-beam induced grating, and self-diffraction) in two different limiting cases (single-pulse experiments and many-pulse accumulated-grating experiments). We find that in five of these six cases the IGA trace is given by the squared amplitude of the electric-field correlation function, thus yielding information about the spectrum of the pulse. Theoretical expressions for the IGA trace are derived for both linearly chirped and self-phase-modulated pulses. Experiments performed with self-phase-modulated pulses are in excellent agreement with the theory. In this case we show how the measured IGA trace can be used to determine both pulse duration and pulse bandwidth.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription