Abstract

The fluorescence detection technique of incoherent accumulated photon echo is applied to the investigation of animal and human tissues. The correlation between the kind of animal tissue and the dephasing time is determined. The dephasing times of normal and cancerous human tissues are measured by this technique. The cancer tissues exhibit shorter dephasing times than the normal tissues, and this is interpreted as being caused by the large number of conformational substates of cancer tissues. The dephasing time of a benign-tumor tissue is also measured and shows a value similar to that of the normal tissue. The dephasing time of a metastasizing cancer region is also measured. The applicability of photon-echo spectroscopy to diagnosis is noted.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Yang and A. C. Anderson, “Specific heat of melanin at temperatures below 3 K,” Phys. Rev. B 34, 2942 (1986).
    [CrossRef]
  2. P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
    [CrossRef]
  3. W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351 (1972).
    [CrossRef]
  4. M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
    [CrossRef]
  5. K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13 (1991).
    [CrossRef] [PubMed]
  6. W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  7. S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
    [CrossRef]
  8. D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
    [CrossRef]
  9. S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
    [CrossRef]

1992 (1)

S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
[CrossRef]

1991 (1)

1990 (1)

D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
[CrossRef]

1988 (1)

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

1987 (1)

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

1986 (1)

J.-S. Yang and A. C. Anderson, “Specific heat of melanin at temperatures below 3 K,” Phys. Rev. B 34, 2942 (1986).
[CrossRef]

1972 (2)

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

Anderson, A. C.

J.-S. Yang and A. C. Anderson, “Specific heat of melanin at temperatures below 3 K,” Phys. Rev. B 34, 2942 (1986).
[CrossRef]

Anderson, P. W.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Berg, M.

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

Boxer, S. G.

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

Fayer, M. D.

D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
[CrossRef]

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

Gottfried, D. S.

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

Halperin, B. I.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Lin, J. W.-I.

S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
[CrossRef]

Littau, K. A.

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

Lockhart, D. J.

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

Middendorf, T. R.

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

Narashimhan, L. A.

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

Narasimhan, L. R.

D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
[CrossRef]

Nemoto, H.

S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
[CrossRef]

Ohsawa, H.

Pack, D. W.

D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
[CrossRef]

Phillips, W. A.

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

Saikan, S.

S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
[CrossRef]

K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13 (1991).
[CrossRef] [PubMed]

Suga, T.

Uchikawa, K.

Varma, C. M.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Walsh, C. A.

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

Yang, J.-S.

J.-S. Yang and A. C. Anderson, “Specific heat of melanin at temperatures below 3 K,” Phys. Rev. B 34, 2942 (1986).
[CrossRef]

J. Chem. Phys. (3)

M. Berg, C. A. Walsh, L. A. Narashimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564 (1988).
[CrossRef]

S. G. Boxer, D. S. Gottfried, D. J. Lockhart, and T. R. Middendorf, “Nonphotochemical holeburning in a protein matrix: chlorophyllide in apomyoglobin,” J. Chem. Phys. 86, 2439 (1987).
[CrossRef]

D. W. Pack, L. R. Narasimhan, and M. D. Fayer, “Solvation shell effects and spectral diffusion: photon echo and optical hole burning experiments on ionic dyes in ethanol glass,” J. Chem. Phys. 92, 4125 (1990).
[CrossRef]

J. Low Temp. Phys. (1)

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. (1)

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Phys. Rev. B (2)

J.-S. Yang and A. C. Anderson, “Specific heat of melanin at temperatures below 3 K,” Phys. Rev. B 34, 2942 (1986).
[CrossRef]

S. Saikan, J. W.-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125 (1992).
[CrossRef]

Other (1)

W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Chemical structures of Rhodamine x dyes

Fig. 2
Fig. 2

Experimental setup for the fluorescence detection of accumulated photon echo. PBS’s, polarization beam splitters.

Fig. 3
Fig. 3

(a) Typical result of the photon-echo measurement obtained by the fluorescence-detection technique at 6 K. (b) Logarithmic plot of the same data as in (a).

Fig. 4
Fig. 4

Temperature dependences of the dephasing times for tissues of chicken liver (squares and circles) and pig liver (triangles) stained with R640. Squares and circles of different sizes denote results for different samples.

Fig. 5
Fig. 5

Temperature dependences of the dephasing times for tissues of pig liver (triangles) and pig muscle (squares) stained with R640. The solid lines are fitted curves of Ta; a = 1.6 for pig muscle; a = 1.8 for pig liver.

Fig. 6
Fig. 6

Typical results of photon-echo measurement for normal and cancer tissues of a human pancreas at 6 K.

Fig. 7
Fig. 7

Temperature dependences of the dephasing times for normal (open circles) and cancer (filled circles) tissues of a human pancreas.

Fig. 8
Fig. 8

Temperature dependences of the dephasing times for normal (open circles) and cancer (filled circles) tissues of a human kidney.

Fig. 9
Fig. 9

Temperature dependences of the dephasing times for normal (open circles) and myoma (filled circles) tissues of a human uterus. The solid and the dashed lines are the fitted curves Ta for the normal and the myoma tissues. The exponent a is 1.6 for the normal tissue and 1.3 for the myoma tissue.

Fig. 10
Fig. 10

Typical results at 6 K for human liver tissue containing the metastasizing pancreas cancer region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Se exp ( - 2 τ / T 2 ) ,
T 2 T - a ,

Metrics