Abstract

We report a pump–probe cross-phase-modulation experiment in a single-mode optical fiber in which the probe spectrum is shifted by an amount comparable with its spectral width under the influence of a 250-pJ pump pulse. The pulses are 210 fs FWHM and are generated by the reshaping of the pulses of a femtosecond Ti:sapphire laser. The dependence of the wavelength shift on the pump–probe delay time is investigated, and the results are found to be in good agreement with numerical simulations. Application to all-optical femtosecond switching is discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef] [PubMed]
  2. P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
    [CrossRef]
  3. A. Höök, “Stimulated scattering processes and cross-phase modulation effects in optical fibers,” Ph.D. dissertation (Chalmers University of Technology, Gothenburg, Sweden, 1991), and references therein.
  4. M. N. Islam, L. F. Mollenauer, R. H. Stollen, J. R. Simpson, and H. T. Shang, Opt. Lett. 12, 625 (1987).
    [CrossRef] [PubMed]
  5. M. N. Islam, Opt. Lett. 14, 1257 (1989).
    [CrossRef] [PubMed]
  6. P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988).
    [CrossRef]
  7. H. Vanherzelle and B. K. Nayar, Int. J. Nonlin. Opt. Phys. 1, 119 (1992).
    [CrossRef]
  8. J. E. Rothenberg, Opt. Lett. 15, 495 (1990).
    [CrossRef] [PubMed]
  9. A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, Opt. Lett. 17, 19 (1992).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), p. 207.
  11. C. Froehly, B. Colombeau, and M. Vampouille, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

1992 (2)

1990 (1)

1989 (1)

1988 (2)

1987 (2)

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
[CrossRef]

M. N. Islam, L. F. Mollenauer, R. H. Stollen, J. R. Simpson, and H. T. Shang, Opt. Lett. 12, 625 (1987).
[CrossRef] [PubMed]

Agrawal, G. P.

A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, Opt. Lett. 17, 19 (1992).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), p. 207.

Alfano, R. R.

P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
[CrossRef]

Baldeck, P. L.

P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
[CrossRef]

Boyd, R. W.

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Friberg, S. R.

Froehly, C.

C. Froehly, B. Colombeau, and M. Vampouille, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Ho, P. P.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
[CrossRef]

Höök, A.

A. Höök, “Stimulated scattering processes and cross-phase modulation effects in optical fibers,” Ph.D. dissertation (Chalmers University of Technology, Gothenburg, Sweden, 1991), and references therein.

Islam, M. N.

Kauranen, M.

Maki, J. J.

Mollenauer, L. F.

Nayar, B. K.

H. Vanherzelle and B. K. Nayar, Int. J. Nonlin. Opt. Phys. 1, 119 (1992).
[CrossRef]

Rothenberg, J. E.

Sfez, B. G.

Shang, H. T.

Silberberg, Y.

Simpson, J. R.

Smith, P. S.

Stentz, A. J.

Stollen, R. H.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Vanherzelle, H.

H. Vanherzelle and B. K. Nayar, Int. J. Nonlin. Opt. Phys. 1, 119 (1992).
[CrossRef]

Weiner, A. M.

Appl. Phys. Lett. (1)

P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

Int. J. Nonlin. Opt. Phys. (1)

H. Vanherzelle and B. K. Nayar, Int. J. Nonlin. Opt. Phys. 1, 119 (1992).
[CrossRef]

Opt. Lett. (5)

Rev. Phys. Appl. (1)

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987), and references therein.
[CrossRef]

Other (3)

A. Höök, “Stimulated scattering processes and cross-phase modulation effects in optical fibers,” Ph.D. dissertation (Chalmers University of Technology, Gothenburg, Sweden, 1991), and references therein.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), p. 207.

C. Froehly, B. Colombeau, and M. Vampouille, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Variations of the mass center of an XPM-shifted probe spectrum as a function of the normalized time delay between pump and probe for T0 of 100, 150, and 500 fs. See Table 1 for other parameters. It has been assumed that β 1 / β 2 1. For positive delay times the probe lags the pump.

Fig. 2
Fig. 2

(a) Spectral and (b) temporal representations for an initially Gaussian probe pulse at the fiber input (dashed curves) and output (solid curves) under the same conditions as in Fig. 4 below: ω2/ω1 = 0.98, T0 = 130 fs, L = 0.3 m, L/LD = 0.75, LD/LW = 6, N2 = 10, τd = 0.

Fig. 3
Fig. 3

Experimental setup for the observation of XPM-induced WS in our pump–probe pulse-shaping experiment.

Fig. 4
Fig. 4

Spectrum of the probe pulse in the absence of the pump and spectrum of the copropagating pump and probe at the output of the fiber. A peak-to-peak shift of the probe of 7 nm is visible. The pump is SPM broadened. There is a less than 20% overlap between the shifted and the unshifted probe pulses, permitting all-optical switching. The experimental parameters are λ1 = 797 nm, λ2 = 814 nm, T0 = 130 fs, L = 0.3 m, LD/LW = 6, P1 = 1.2 kW.

Fig. 5
Fig. 5

Variation of the XPM-induced WS (mass center) of the probe as a function of the normalized pump–probe delay time for λ1 = 795 nm, λ2 = 814 nm, T0 = 130 fs, L = 0.3 m, L/LD = 0.75, LD/LW = 6, P1 = 0.78 kW, N2 =6.1.

Tables (1)

Tables Icon

Table 1 Parameters of Numerical Integration of Fig. 1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U 1 ξ + i 2 2 U 1 τ 2 = i N 2 ( U 1 2 + 2 U 2 2 ) U 1 ,
U 2 ξ + L D L W U 2 τ + i 2 β 2 β 1 2 U 2 τ 2 = i N 2 ω 2 ω 1 ( U 2 2 + 2 U 1 2 ) U 2 .
δ λ max ( τ d ) = - λ 1 2 γ 1 P 1 π c D Δ λ { exp ( - τ d 2 ) - exp [ - ( τ d - δ ) 2 ] } ,

Metrics