Abstract

Blue upconversion luminescence at 480 nm resulting from Tm3+:1G43H6 by 650-nm pumping was selectively sensitized with Er3+ codoped in a tellurite glass. Codoping of Er3+ also quenched the 1D23F4 luminescence at 450 nm, leading to a single-line blue upconversion. To investigate this sensitized upconversion mechanism, the excitation spectra and the concentration dependence of the lifetimes of the Tm3+ and the Er3+ levels were measured for various doping levels. The Tm3+:3H4 level, which is the intermediate level of excited-state absorption to 1D2, to was found to be depopulated by the energy transfer of Tm3+:3H4 → Er3+:4I9/2 and the Tm3+:3F4 level, which is the intermediate level of excited-state absorption to 1G4, was found to be sensitized by the Er3+:4I13/2 → Tm3+:4F4 energy transfer. The concentration dependence of the transfer rate and of the efficiency of related levels was obtained, and it was concluded that the codoped Er3+ ion is a selective sensitizer in terms of quenching 1D2 upconversion and activating 1G4 upconversion by acting as an acceptor or as a donor for the initial level of each excited-state absorption of the Tm3+ ion.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
    [CrossRef]
  2. M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
    [CrossRef]
  3. S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).
  4. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
    [CrossRef]
  5. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
    [CrossRef]
  6. S. Tanabe and T. Hanada, “Branching ratio of UV and blue upconversions of Tm3+ ions in several glasses,” J. Appl. Phys. (to be published).
  7. N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
    [CrossRef]
  8. C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
    [CrossRef]
  9. S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
    [CrossRef]
  10. S. Tanabe and S. Todoroki, “Analyses of local structure of rare earth ions in glasses by phonon sideband spectra,” New Glass 7, 189–195 (1992).
  11. L. G. Van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” J. Chem. Phys. 44, 3514–3522 (1966).
    [CrossRef]
  12. J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
    [CrossRef]
  13. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
    [CrossRef]
  14. S. Tanabe and K. Hirao, “Design of rare-earth containing upconversion phosphor,” Ceramics (Japan) 26, 144–148 (1991).
  15. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.
  16. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
    [CrossRef]
  17. R. D. Peacock, “The intensities of lanthanide f↔ f transitions,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 83–121.
    [CrossRef]
  18. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  19. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  20. S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
    [CrossRef]
  21. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
    [CrossRef]
  22. W. F. Krupke, “Induced emission cross section in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
    [CrossRef]
  23. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
    [CrossRef]
  24. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  25. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
    [CrossRef]
  26. S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
    [CrossRef]
  27. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
    [CrossRef]
  28. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
    [CrossRef]
  29. R. Reisfeld, “Radiative and nonradiative transitions of rare-earth ions in glasses,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 123–175.
    [CrossRef]

1993 (3)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

1992 (4)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).

S. Tanabe and S. Todoroki, “Analyses of local structure of rare earth ions in glasses by phonon sideband spectra,” New Glass 7, 189–195 (1992).

1991 (1)

S. Tanabe and K. Hirao, “Design of rare-earth containing upconversion phosphor,” Ceramics (Japan) 26, 144–148 (1991).

1990 (4)

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
[CrossRef]

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

1988 (1)

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
[CrossRef]

1987 (1)

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

1986 (1)

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

1977 (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

1974 (1)

W. F. Krupke, “Induced emission cross section in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

1973 (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[CrossRef]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

1966 (1)

L. G. Van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” J. Chem. Phys. 44, 3514–3522 (1966).
[CrossRef]

1965 (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Adam, J. L.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
[CrossRef]

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

Auzel, F. E.

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Boehm, L.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[CrossRef]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Drexhage, M. G.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Francois, P. L.

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

Georges, T.

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

Grodkiewicz, W. H.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

Guery, C.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
[CrossRef]

Hanada, T.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

S. Tanabe and T. Hanada, “Branching ratio of UV and blue upconversions of Tm3+ ions in several glasses,” J. Appl. Phys. (to be published).

Hanna, D. C.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Hirao, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe and K. Hirao, “Design of rare-earth containing upconversion phosphor,” Ceramics (Japan) 26, 144–148 (1991).

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.

Johnson, L. F.

L. G. Van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” J. Chem. Phys. 44, 3514–3522 (1966).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Krupke, W. F.

W. F. Krupke, “Induced emission cross section in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

Lucas, J.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
[CrossRef]

Mikulyak, R. M.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[CrossRef]

Monerie, M.

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
[CrossRef]

Neveux, D.

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohyagi, T.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

Peacock, R. D.

R. D. Peacock, “The intensities of lanthanide f↔ f transitions,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 83–121.
[CrossRef]

Percival, R. M.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Perry, I. R.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
[CrossRef]

Reisfeld, R.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

R. Reisfeld, “Radiative and nonradiative transitions of rare-earth ions in glasses,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 123–175.
[CrossRef]

Sibley, W. A.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Smart, R. G.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Soga, N.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.

Spector, N.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Suscavage, M.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Tamai, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

Tanabe, S.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).

S. Tanabe and S. Todoroki, “Analyses of local structure of rare earth ions in glasses by phonon sideband spectra,” New Glass 7, 189–195 (1992).

S. Tanabe and K. Hirao, “Design of rare-earth containing upconversion phosphor,” Ceramics (Japan) 26, 144–148 (1991).

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

S. Tanabe and T. Hanada, “Branching ratio of UV and blue upconversions of Tm3+ ions in several glasses,” J. Appl. Phys. (to be published).

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.

Todoroki, S.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

S. Tanabe and S. Todoroki, “Analyses of local structure of rare earth ions in glasses by phonon sideband spectra,” New Glass 7, 189–195 (1992).

Toratani, H.

S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).

Townsend, J. E.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Tropper, A. C.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

Van Uitert, L. G.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

L. G. Van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” J. Chem. Phys. 44, 3514–3522 (1966).
[CrossRef]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Yeh, D. C.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

Yoshii, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.

Ceramics (Japan) (1)

S. Tanabe and K. Hirao, “Design of rare-earth containing upconversion phosphor,” Ceramics (Japan) 26, 144–148 (1991).

Chem. Phys. Lett. (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Electron. Lett. (2)

J. Y. Allain, M. Monerie, and H. Poignant, “Blue upconversion fluorozirconate fibre laser,” Electron. Lett. 26, 166–168 (1990).
[CrossRef]

M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, “Ground-state and excited-state absorption in rare-earth doped optical fibers,” Electron. Lett. 26, 320–321 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Krupke, “Induced emission cross section in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

J. Appl. Phys. (3)

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between Ω6intensity parameters of Er3+ and 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993).
[CrossRef]

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, “1.5-μ m infrared excitation of visible luminescence in Y1−x Erx F3and Y1−x−y Erx Tmy F3via resonant-energy transfer,” J. Appl. Phys. 60, 4262–4267 (1986).
[CrossRef]

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

S. Tanabe, T. Ohyagi, T. Hanada, and N. Soga, “Upconversion and local structure of Er3+ doped aluminate glasses,” J. Ceram. Soc. Jpn. 101, 78–83 (1993).
[CrossRef]

J. Chem. Phys. (4)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

L. G. Van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” J. Chem. Phys. 44, 3514–3522 (1966).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. Lumin. (1)

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ions in indium-based fluoride glasses,” J. Lumin. 42, 181–189 (1988).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and GaO3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Kotai Butsuri (1)

S. Tanabe, K. Hirao, and H. Toratani, “Rare-earth containing upconversion laser glasses,” Kotai Butsuri 27, 186–196 (1992).

New Glass (1)

S. Tanabe and S. Todoroki, “Analyses of local structure of rare earth ions in glasses by phonon sideband spectra,” New Glass 7, 189–195 (1992).

Opt. Commun. (1)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78, 187–194 (1990).
[CrossRef]

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Phys. Rev. B (4)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation and local structure of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B 45, 4620–4625 (1992).
[CrossRef]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd–Ofelt intensity parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Excited state absorption mechanisms in red-laser pumped UV- and blue-upconversions of Tm3+ions in fluoroaluminate glasses,” Phys. Rev. B 47, 2507–2514 (1993); S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV- and blue upconversions of Tm3+-doped fluoride glasses and their mechanisms,” in Proceedings of the 32nd Meeting on Glass and Photonics Materials, T. Minami, ed. (Ceramics Society of Japan, Osaka, Japan, 1991), pp. 17–18.
[CrossRef]

Proc. IEEE (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Other (4)

R. Reisfeld, “Radiative and nonradiative transitions of rare-earth ions in glasses,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 123–175.
[CrossRef]

R. D. Peacock, “The intensities of lanthanide f↔ f transitions,” in Structure and Bonding (Springer-Verlag, Berlin, 1975), Vol. 22, pp. 83–121.
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion of Er3+-doped fluoride glass by tunable dye laser,” in Science and Technology of New Glasses, S. Sakka and N. Soga, eds. (Ceramics Society of Japan, Tokyo, 1991), pp. 193–198.

S. Tanabe and T. Hanada, “Branching ratio of UV and blue upconversions of Tm3+ ions in several glasses,” J. Appl. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Upconversion mechanism of Tm3+ by 0.65-μm pumping.4

Fig. 2
Fig. 2

(a) Upconversion luminescence spectra of 1.0% Tm3+ singly doped glass with various pumping wavelengths. (b) Excitation spectra of upconversion luminescences of 1D23F4 and 1G43H6 in 1.0% Tm3+ singly doped glass. The absorption spectrum is also shown for comparison.

Fig. 3
Fig. 3

(a) Upconversion luminescence spectra of 1.0% Tm3+–1.0% Er3+-codoped glass with various pumping wavelengths. (b) Upconversion luminescence spectra of 1.0% Tm3+-doped tellurite glasses with varying Er3+ content by 654-nm pumping.

Fig. 4
Fig. 4

Dependence of Tm3+:3H43H6 emission intensity on the Er3+ content.

Fig. 5
Fig. 5

Excitation spectra of Tm3+:3H43H6 emission in 1.0% Tm3+ singly doped and 1.0% Tm3+–1.0% Er3+-codoped glasses. The absorption spectra are also shown for comparison. The zero position of each spectrum is indicated.

Fig. 6
Fig. 6

Upconversion luminescence spectra of 1.0% Er3+ singly doped glass with various pumping wavelengths.

Fig. 7
Fig. 7

Excitation spectra of 550-nm upconversion luminescence in 1.0% Er3+-doped glasses. Their absorption spectra are also shown for comparison. The zero position of each spectrum is indicated.

Fig. 8
Fig. 8

Excitation spectra of (a) Er3+:4I11/24I15/2 and (b) Er3+:4I13/24I15/2 emission in 1.0% Er3+-doped glasses. Their absorption spectra are also shown for comparison. The zero position of each spectrum is indicated.

Fig. 9
Fig. 9

Upconversion luminescence spectra of 1.0% Er3+-doped tellurite glasses with various Tm3+ content.

Fig. 10
Fig. 10

Er3+:3S3/24I15/2, 4I11/24I15/2, and 4I13/24I15/2 emission intensities by 650-nm pumping as a function of Tm3+ content.

Fig. 11
Fig. 11

(a) Upconversion mechanisms of Tm3+–Er3+-codoped tellurite glass by 0.65-μm excitation. (b) Upconversion mechanisms of Er3+–Tm3+-codoped tellurite glass by 0.68-μm excitation.

Fig. 12
Fig. 12

Decay curves of Er3+:4I13/24I15/2 emission in 1.0% Er3+-doped glasses with varying Tm3+ content.

Fig. 13
Fig. 13

Decay curves of Tm3+:3H43H6 emission in 1.0% Tm3+-doped glasses with varying Er3+ content.

Fig. 14
Fig. 14

Dependence of lifetimes of the Er3+:4I13/2 and the Tm3+:3H4 levels on acceptor content.

Fig. 15
Fig. 15

Dependence of energy-transfer rate WET on acceptor content.

Fig. 16
Fig. 16

Energy-transfer efficiency and quantum efficiency as a function of acceptor content.

Tables (2)

Tables Icon

Table 1 Ωt Parameters of Samplesa

Tables Icon

Table 2 Spontaneous-Emission Probability of the Er3+:4I13/2 and the Tm3+:3H4 Levelsa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

60 TeO 2 - 25 BaO - 10 ZnO - ( 4 - x ) YO 1.5 - 1.0 ErO 1.5 - x TmO 1.5 , x = 0.0 , 0.5 , 1.0 , 1.5 , 2.0 , 60 TeO 2 - 25 BaO - 10 ZnO - ( 4 - y ) YO 1.5 - 1.0 TmO 1.5 - y ErO 1.5 , y = 0.0 , 0.5 , 1.0 , 1.5 , 2.0.
band k ( λ ) d λ = 8 π 3 e λ ¯ ρ 3 h c ( 2 J + 1 ) 1 n ( n 2 + 2 ) 2 9 S J J ,
S J J ed = t = 2 , 4 , 6 Ω t ( S L ) J U ( t ) ( S L ) J 2 ,
A [ ( S L ) J ; ( S L ) J ] = 64 π 4 e 2 3 h ( 2 J + 1 ) λ 3 ( χ ed S ed + χ md S md ) ,
S [ ( S , L ) J ; ( S , L ) J ] md = 1 ( 2 m c ) 2 ( S , L ) J L + 2 J ( S , L ) J 2
W ET = W ET ( 0 ) exp ( - β Δ E ) ,
Tm 3 + : H 3 4 Er 3 + : I 4 9 / 2 ,
Er 3 + : I 4 13 / 2 Tm 3 + : F 3 4 .
1 τ f = A + W NR = A + W MP + W ET ,
1 τ 0 = A + W MP .
W ET = 1 τ f - 1 τ 0 ,
η Q = A A + W NR = τ f A .
η ET = 1 - τ f / τ 0 ,

Metrics