Abstract

Room-temperature 1.532-μm pumped 1.645-μm laser action in the Er3+:Y3Al5O12(Er:YAG) 4I13/2y3 (6602-cm−1) ⇒ 4I15/2z7 (523-cm−1) transition was demonstrated and was analyzed. Laser action at 1.645 μm was achieved in Er:YAG crystals with Er concentrations ranging from 0.5% to 4%. Slope efficiencies as high as 40% were obtained with 0.5% Er:YAG. For concentrations up to 4%, measurements of laser thresholds indicate that upconversion losses were small.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. J. Kiss and R. C. Duncan, “Optical maser action in CaWO4:Er3+,” Proc. IRE 50, 1531 (1962).
  2. S. A. Pollack, “Stimulated emission in CaF2:Er3+,” Proc. IEEE 51, 1793–1794 (1963).
    [CrossRef]
  3. W. F. Krupke and J. B. Gruber, “Energy levels of Er3+in LaF3and coherent emission at 1.61 μ,” J. Chem. Phys. 41, 1225–1232 (1964).
    [CrossRef]
  4. L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
    [CrossRef]
  5. K. O. White and S. A. Schleusener, “Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm,” Appl. Phys. Lett. 21, 419–420 (1972).
    [CrossRef]
  6. G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
    [CrossRef]
  7. H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
    [CrossRef]
  8. K. Spariosu and M. Birnbaum, “Room-temperature 1.644 micron Er:YAG lasers,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.
  9. G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
    [CrossRef]
  10. D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep., Solid-State Research (Lincoln Laboratory, MIT, Lexington, Mass., 1985), p. 9.
  11. F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
    [CrossRef]
  12. L. Riseberg and M. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 92–159.
  13. J. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics, F. K. Fong, ed. (Springer-Verlag, New York, 1976), Vol. 16, pp. 239–295.
    [CrossRef]
  14. S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
    [CrossRef]
  15. S. Pollack and D. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF SrF2, and CaF2crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
    [CrossRef]
  16. P. Xie and S. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15, 848–850 (1990).
    [CrossRef] [PubMed]
  17. P. Xie and S. Rand, “Continuous-wave, trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
    [CrossRef]
  18. S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
    [CrossRef]
  19. S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
    [CrossRef]
  20. R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.
  21. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
    [CrossRef]
  22. V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).
  23. L. M. Franz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  24. R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
    [CrossRef]
  25. P. V. Avizonis and R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687 (1966).
    [CrossRef]
  26. A. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp. 363–372.
  27. S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
    [CrossRef]
  28. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
    [CrossRef]

1994 (1)

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

1991 (2)

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

1990 (2)

P. Xie and S. Rand, “Continuous-wave, trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

P. Xie and S. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15, 848–850 (1990).
[CrossRef] [PubMed]

1989 (2)

S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

1988 (2)

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

S. Pollack and D. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF SrF2, and CaF2crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

1986 (2)

S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

1974 (1)

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

1973 (2)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

1972 (1)

K. O. White and S. A. Schleusener, “Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm,” Appl. Phys. Lett. 21, 419–420 (1972).
[CrossRef]

1966 (1)

P. V. Avizonis and R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687 (1966).
[CrossRef]

1965 (1)

L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

1964 (1)

W. F. Krupke and J. B. Gruber, “Energy levels of Er3+in LaF3and coherent emission at 1.61 μ,” J. Chem. Phys. 41, 1225–1232 (1964).
[CrossRef]

1963 (3)

S. A. Pollack, “Stimulated emission in CaF2:Er3+,” Proc. IEEE 51, 1793–1794 (1963).
[CrossRef]

L. M. Franz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
[CrossRef]

1962 (1)

Z. J. Kiss and R. C. Duncan, “Optical maser action in CaWO4:Er3+,” Proc. IRE 50, 1531 (1962).

Auzel, F.

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Avizonis, P. V.

P. V. Avizonis and R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687 (1966).
[CrossRef]

Bellman, R.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
[CrossRef]

Birnbaum, G.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
[CrossRef]

Birnbaum, M.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

K. Spariosu and M. Birnbaum, “Room-temperature 1.644 micron Er:YAG lasers,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

Camargo, M. B.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Chang, D.

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

S. Pollack and D. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF SrF2, and CaF2crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
[CrossRef]

Chang, D. B.

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Duczynski, E. W.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Duncan, R. C.

Z. J. Kiss and R. C. Duncan, “Optical maser action in CaWO4:Er3+,” Proc. IRE 50, 1531 (1962).

Franz, L. M.

L. M. Franz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Gapontsev, V. P.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Garmash, V. M.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Georgescu, S.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Grotbeck, R. L.

P. V. Avizonis and R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687 (1966).
[CrossRef]

Gruber, J. B.

W. F. Krupke and J. B. Gruber, “Energy levels of Er3+in LaF3and coherent emission at 1.61 μ,” J. Chem. Phys. 41, 1225–1232 (1964).
[CrossRef]

Huber, G.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Izyneev, A. A.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Jenssen, H. P.

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Killinger, D. K.

D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep., Solid-State Research (Lincoln Laboratory, MIT, Lexington, Mass., 1985), p. 9.

Kiss, Z. J.

Z. J. Kiss and R. C. Duncan, “Optical maser action in CaWO4:Er3+,” Proc. IRE 50, 1531 (1962).

Kokta, M.

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

Kolbatskov, Yu. M.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Kravchenko, V. B.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Krupke, W. F.

W. F. Krupke and J. B. Gruber, “Energy levels of Er3+in LaF3and coherent emission at 1.61 μ,” J. Chem. Phys. 41, 1225–1232 (1964).
[CrossRef]

Lupei, A.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

Lupei, V.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

McFarlane, R. A.

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Moise, N.

S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
[CrossRef]

Montgomery, S. T.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Murina, T. M.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Nodvik, J. S.

L. M. Franz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Onishchenko, A. M.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Pashkov, V. A.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Petermann, K.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Pollack, S.

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

S. Pollack and D. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF SrF2, and CaF2crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
[CrossRef]

Pollack, S. A.

S. A. Pollack, “Stimulated emission in CaF2:Er3+,” Proc. IEEE 51, 1793–1794 (1963).
[CrossRef]

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Prokhorov, A. M.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Rand, S.

P. Xie and S. Rand, “Continuous-wave, trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

P. Xie and S. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15, 848–850 (1990).
[CrossRef] [PubMed]

Riseberg, L.

L. Riseberg and M. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 92–159.

Robinson, M.

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Rudnitskii, Yu. P.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Schleusener, S. A.

K. O. White and S. A. Schleusener, “Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm,” Appl. Phys. Lett. 21, 419–420 (1972).
[CrossRef]

Semenov, A. A.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp. 363–372.

Smirnov, A. I.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Spariosu, K.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu and M. Birnbaum, “Room-temperature 1.644 micron Er:YAG lasers,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

Stange, H.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

Studenikin, M. I.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Stultz, R. D.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Ursu, I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

VanUitert, L. G.

L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Wagner, W. G.

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
[CrossRef]

Weber, M.

L. Riseberg and M. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 92–159.

White, K. O.

K. O. White and S. A. Schleusener, “Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm,” Appl. Phys. Lett. 21, 419–420 (1972).
[CrossRef]

Wright, J.

J. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics, F. K. Fong, ed. (Springer-Verlag, New York, 1976), Vol. 16, pp. 239–295.
[CrossRef]

Xie, P.

P. Xie and S. Rand, “Continuous-wave, trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

P. Xie and S. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15, 848–850 (1990).
[CrossRef] [PubMed]

Zhabotinskii, M. E.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Zhekov, V. I.

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Zverev, G. M.

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

Appl. Phys. B (1)

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μ m laser action in Er-doped garnets at room temperature,” Appl. Phys. B 49, 269–273 (1989).
[CrossRef]

Appl. Phys. Lett. (5)

L. F. Johnson, J. E. Geusic, and L. G. VanUitert, “Coherent oscillations from Tm+3, Ho+3, Yb+3, and Er+3 ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

K. O. White and S. A. Schleusener, “Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm,” Appl. Phys. Lett. 21, 419–420 (1972).
[CrossRef]

P. Xie and S. Rand, “Continuous-wave, trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

S. Pollack, D. Chang, and M. Birnbaum, “Threefold upconversion pumped laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er:glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U4+:SrF2efficient saturable absorber Q-switch for the 1.54 μ m Er:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

J. Appl. Phys. (6)

S. Pollack, D. Chang, M. Birnbaum, and M. Kokta, “Upconversion-pumped 2.8–2.9μm lasing of Er3+ion in garnets,” J. Appl. Phys. 70, 7227–7239 (1991).
[CrossRef]

S. Pollack, D. Chang, and N. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986).
[CrossRef]

S. Pollack and D. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF SrF2, and CaF2crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

L. M. Franz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

R. Bellman, G. Birnbaum, and W. G. Wagner, “Transmission of monochromatic radiation in a two-level material,” J. Appl. Phys. 34, 780–782 (1963).
[CrossRef]

P. V. Avizonis and R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687 (1966).
[CrossRef]

J. Appl. Spectrosc. (USSR) (1)

G. M. Zverev, V. M. Garmash, A. M. Onishchenko, V. A. Pashkov, A. A. Semenov, Yu. M. Kolbatskov, and A. I. Smirnov, “Induced emission by trivalent erbium ions in crystals of yttrium–aluminum garnet,” J. Appl. Spectrosc. (USSR) 21, 1467–1469 (1974).
[CrossRef]

J. Chem. Phys. (1)

W. F. Krupke and J. B. Gruber, “Energy levels of Er3+in LaF3and coherent emission at 1.61 μ,” J. Chem. Phys. 41, 1225–1232 (1964).
[CrossRef]

JETP Lett. (1)

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, and Yu. P. Rudnitskii, “Effective 1.054–1.54μstimulated emission conversion,” JETP Lett. 18, 251–253 (1973).

Opt. Commun. (1)

S. Georgescu, V. Lupei, A. Lupei, V. I. Zhekov, T. M. Murina, and M. I. Studenikin, “Concentration effects on the upconversion from the 4I13/2level of Er+3 in YAG,” Opt. Commun. 81, 186–192 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (2)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

S. A. Pollack, “Stimulated emission in CaF2:Er3+,” Proc. IEEE 51, 1793–1794 (1963).
[CrossRef]

Proc. IRE (1)

Z. J. Kiss and R. C. Duncan, “Optical maser action in CaWO4:Er3+,” Proc. IRE 50, 1531 (1962).

Sov. J. Quantum Electron. (1)

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Other (6)

A. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp. 363–372.

D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep., Solid-State Research (Lincoln Laboratory, MIT, Lexington, Mass., 1985), p. 9.

K. Spariosu and M. Birnbaum, “Room-temperature 1.644 micron Er:YAG lasers,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

L. Riseberg and M. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976), pp. 92–159.

J. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Topics in Applied Physics, F. K. Fong, ed. (Springer-Verlag, New York, 1976), Vol. 16, pp. 239–295.
[CrossRef]

R. A. McFarlane, M. Robinson, S. A. Pollack, D. B. Chang, and H. P. Jenssen, “Visible and infrared laser operation by upconversion pumping of erbium-doped fluorides,” in Tunable Solid-State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 179–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Energy-level diagram for Er3+ showing the ion-pair upconversion effect and the resulting upconversion fluorescence.

Fig. 2
Fig. 2

QE7 Er:glass laser performance at 1.532 μm for a 180-μF PFN (≈1-ms flash-lamp pulse, open square) and a 270-μF PFN (≈1.5-ms flash-lamp pulse, circle).

Fig. 3
Fig. 3

Comparison between absorption (dashed curve) and photoluminescence (solid curve) spectra for 0.5% Er:YAG.

Fig. 4
Fig. 4

Experimental arrangement for absorption (and bleaching) measurements.

Fig. 5
Fig. 5

Absorption saturation in 1-cm-thick 0.5% (square), 1% (circle), and 2% (diamond) Er:YAG crystals. The dashed curves represent the modified Franz–Nodvik model, and the solid curves represent the numerical integration model.

Fig. 6
Fig. 6

Incident and transmitted 1.532-,um spiking pulses and the corresponding integrated 1.532-μm incident and transmitted energy pulses (spiking signals are not to scale).

Fig. 7
Fig. 7

Experimental arrangement for upconversion fluorescence measurements. PMT, photomultiplier tube.

Fig. 8
Fig. 8

1.532-μm-pumped 980-nm upconversion fluorescence in Er:YAG (4%, 1%, 2%, lowest-highest curves, respectively). The rectangle represents the 1.532-μm pump pulse. The small peaks at the beginning are due to scattered flash-lamp radiation, and the large delayed peaks are due to upconversion fluorescence.

Fig. 9
Fig. 9

Experimental arrangement for measuring the Er:YAG laser characteristics.

Fig. 10
Fig. 10

1.645-μm laser output (top trace) with a corresponding 1.532-μm pump (bottom trace) for the 1% Er:YAG laser.

Fig. 11
Fig. 11

Er:YAG laser energy output performance.

Fig. 12
Fig. 12

Er3+:YAG energy-level diagram (300 K) showing the 1.532-μm-pumped 1.645-μm laser transition and the appropriate Boltzmann factors.

Tables (1)

Tables Icon

Table 1 1.532-μm-Pumped 1.645-μm Er:YAG Laser Performance

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d I d z = σ I ( f 1 N L - f 2 N u ) ,
d N u d t = σ I h ν ( f 1 N L - f 2 N u ) ,
d N 1 d t = - σ S ( f 1 N 1 - f 2 N 2 ) + N 2 τ 2 + N 3 τ 31 + β N 2 2 ,
d N 2 d t = - σ S ( f 1 N 1 - f 2 N 2 ) - N 2 τ 2 + N 3 τ 32 - 2 β N 2 2 ,
d N 3 d t = - N 3 τ 3 + β N 2 2 ,
Δ N 0 = f 3 N 2 - f 4 N 1 = ( f 3 + f 4 ) N 2 - f 4 N t ,
R 1 R 2 exp ( 2 σ L Δ N L - δ ) = 1 ,
σ L Δ N th = γ th = 1 2 L [ δ + ln ( 1 R 1 R 2 ) ] 1 2 L ( δ + T ) ,

Metrics