Abstract

I discuss the role of group-velocity dispersion when a soliton propagates in a Raman-active medium. Using a modified beam-propagation method, I generate a pump soliton by inducing a phase shift of order π in an input Stokes seed. As the pulses propagate with different velocities because of the frequency dependence of the refractive index, pulse walk-off effects cause the soliton to decay and to break up. This gives rise to a new effect: the generation of a Stokes pulse whose width is comparable with the pump soliton width and whose height may be a factor of 2 larger than the maximum input pump field amplitude.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Chu and A. C. Scott, Phys. Rev. A 12, 2060 (1975); D. J. Kaup, Physica D 6, 142 (1983); H. Steudel, Physica D 6, 155 (1983); N. Tan-no, T. Shirahara, K. Yakoto, and H. Inaba, Phys. Rev. A 12, 159 (1975).
    [Crossref]
  2. J. C. Englund and C. M. Bowden, Phys. Rev. Lett. 57, 2661 (1986); C. M. Bowden and J. C. Englund, Opt. Commun. 67, 71 (1988).
    [Crossref] [PubMed]
  3. K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
    [Crossref]
  4. D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
    [Crossref] [PubMed]
  5. J. C. Englund and C. M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992).
    [Crossref] [PubMed]
  6. J. W. Haus and M. Scalora, Phys. Rev. A 42, 3149 (1990); M. Scalora and J. W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991); in Nonlinear Optics and Materials, C. M. Bowden and C. D. Cantrell, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1497, 153 (1991); M. Scalora, C. M. Bowden, and J. W. Haus, Phys. Rev. A 48, 3916 (1993).
    [Crossref] [PubMed]
  7. M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
    [Crossref] [PubMed]
  8. K. S. Chiang, Opt. Lett. 17, 352 (1992).
    [Crossref] [PubMed]
  9. D. N. Christodoulides and R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
    [Crossref]
  10. M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
    [Crossref]
  11. D. Schadt, B. Jaskorzynska, and M. Oesterberg, J. Opt. Soc. Am. B 3, 1257 (1986).
    [Crossref]

1993 (1)

M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
[Crossref] [PubMed]

1992 (1)

1990 (2)

J. C. Englund and C. M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992).
[Crossref] [PubMed]

J. W. Haus and M. Scalora, Phys. Rev. A 42, 3149 (1990); M. Scalora and J. W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991); in Nonlinear Optics and Materials, C. M. Bowden and C. D. Cantrell, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1497, 153 (1991); M. Scalora, C. M. Bowden, and J. W. Haus, Phys. Rev. A 48, 3916 (1993).
[Crossref] [PubMed]

1989 (2)

D. N. Christodoulides and R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[Crossref]

D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
[Crossref] [PubMed]

1987 (1)

M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
[Crossref]

1986 (2)

J. C. Englund and C. M. Bowden, Phys. Rev. Lett. 57, 2661 (1986); C. M. Bowden and J. C. Englund, Opt. Commun. 67, 71 (1988).
[Crossref] [PubMed]

D. Schadt, B. Jaskorzynska, and M. Oesterberg, J. Opt. Soc. Am. B 3, 1257 (1986).
[Crossref]

1983 (1)

K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
[Crossref]

1975 (1)

F. Y. Chu and A. C. Scott, Phys. Rev. A 12, 2060 (1975); D. J. Kaup, Physica D 6, 142 (1983); H. Steudel, Physica D 6, 155 (1983); N. Tan-no, T. Shirahara, K. Yakoto, and H. Inaba, Phys. Rev. A 12, 159 (1975).
[Crossref]

Bowden, C. M.

M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
[Crossref] [PubMed]

J. C. Englund and C. M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992).
[Crossref] [PubMed]

J. C. Englund and C. M. Bowden, Phys. Rev. Lett. 57, 2661 (1986); C. M. Bowden and J. C. Englund, Opt. Commun. 67, 71 (1988).
[Crossref] [PubMed]

Carlsten, J. L.

D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
[Crossref] [PubMed]

K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
[Crossref]

Chiang, K. S.

Christodoulides, D. N.

D. N. Christodoulides and R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[Crossref]

Chu, F. Y.

F. Y. Chu and A. C. Scott, Phys. Rev. A 12, 2060 (1975); D. J. Kaup, Physica D 6, 142 (1983); H. Steudel, Physica D 6, 155 (1983); N. Tan-no, T. Shirahara, K. Yakoto, and H. Inaba, Phys. Rev. A 12, 159 (1975).
[Crossref]

Druhl, K.

K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
[Crossref]

Englund, J. C.

J. C. Englund and C. M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992).
[Crossref] [PubMed]

J. C. Englund and C. M. Bowden, Phys. Rev. Lett. 57, 2661 (1986); C. M. Bowden and J. C. Englund, Opt. Commun. 67, 71 (1988).
[Crossref] [PubMed]

Harde, H.

M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
[Crossref]

Haus, J. W.

J. W. Haus and M. Scalora, Phys. Rev. A 42, 3149 (1990); M. Scalora and J. W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991); in Nonlinear Optics and Materials, C. M. Bowden and C. D. Cantrell, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1497, 153 (1991); M. Scalora, C. M. Bowden, and J. W. Haus, Phys. Rev. A 48, 3916 (1993).
[Crossref] [PubMed]

Jaskorzynska, B.

Joseph, R. I.

D. N. Christodoulides and R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[Crossref]

Kuckarts, M.

M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
[Crossref]

MacPherson, D. C.

D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
[Crossref] [PubMed]

Oesterberg, M.

Scalora, M.

M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
[Crossref] [PubMed]

J. W. Haus and M. Scalora, Phys. Rev. A 42, 3149 (1990); M. Scalora and J. W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991); in Nonlinear Optics and Materials, C. M. Bowden and C. D. Cantrell, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1497, 153 (1991); M. Scalora, C. M. Bowden, and J. W. Haus, Phys. Rev. A 48, 3916 (1993).
[Crossref] [PubMed]

Schadt, D.

Schulz, R.

M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
[Crossref]

Scott, A. C.

F. Y. Chu and A. C. Scott, Phys. Rev. A 12, 2060 (1975); D. J. Kaup, Physica D 6, 142 (1983); H. Steudel, Physica D 6, 155 (1983); N. Tan-no, T. Shirahara, K. Yakoto, and H. Inaba, Phys. Rev. A 12, 159 (1975).
[Crossref]

Singh, S.

M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
[Crossref] [PubMed]

Swansen, R. C.

D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
[Crossref] [PubMed]

Wenzel, R. G.

K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

D. N. Christodoulides and R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Kuckarts, R. Schulz, and H. Harde, Opt. Quantum Electron. 19, 237 (1987).
[Crossref]

Phys. Rev. A (4)

F. Y. Chu and A. C. Scott, Phys. Rev. A 12, 2060 (1975); D. J. Kaup, Physica D 6, 142 (1983); H. Steudel, Physica D 6, 155 (1983); N. Tan-no, T. Shirahara, K. Yakoto, and H. Inaba, Phys. Rev. A 12, 159 (1975).
[Crossref]

D. C. MacPherson, R. C. Swansen, and J. L. Carlsten, Phys. Rev. A 40, 6745 (1989); Phys. Rev. Lett. 61, 66 (1988); Phys. Rev. A 39, 6078 (1989).
[Crossref] [PubMed]

J. C. Englund and C. M. Bowden, Phys. Rev. A 42, 2870 (1990); Phys. Rev. A 46, 578 (1992).
[Crossref] [PubMed]

J. W. Haus and M. Scalora, Phys. Rev. A 42, 3149 (1990); M. Scalora and J. W. Haus, J. Opt. Soc. Am. B 8, 1003 (1991); in Nonlinear Optics and Materials, C. M. Bowden and C. D. Cantrell, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1497, 153 (1991); M. Scalora, C. M. Bowden, and J. W. Haus, Phys. Rev. A 48, 3916 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

M. Scalora, S. Singh, and C. M. Bowden, Phys. Rev. Lett. 70, 1248 (1993).
[Crossref] [PubMed]

J. C. Englund and C. M. Bowden, Phys. Rev. Lett. 57, 2661 (1986); C. M. Bowden and J. C. Englund, Opt. Commun. 67, 71 (1988).
[Crossref] [PubMed]

K. Druhl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51, 1171 (1983); R. G. Wenzel, J. L. Carlsten, and K. Druhl, J. Stat. Phys. 39, 621 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Time evolution of laser (solid curve) and Stokes (dashed curve) field amplitudes for α = 1, Γ = 10. The maximum input pump field is E0 = 5, and Es0 = 0.5.

Fig. 2
Fig. 2

Same as Fig. 1, with α = 1.05.

Fig. 3
Fig. 3

Time evolution of the Stokes field amplitude with α = 1.01 (solid curve) and α = 1.15 (dotted curve). All the other parameters are the same as those given in Fig. 1. The ringing is reduced when the velocity mismatch is larger, whereas the maximum field amplitude increases.

Fig. 4
Fig. 4

Time evolution of the pump field amplitude with α = 1.01. The mismatch is not large enough to have yet caused significant decay. However, breakup of the soliton wave packet is evident here. The soliton will completely decay for larger propagation distances.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E p ξ + n p E p τ = - Q E s n p ,
E s ξ + n s E s τ = Q * E p n s ,
Q τ = - Γ Q + E S * E p .
E p , s ( τ , ξ ) = [ exp 0 τ ( D + χ p , s ) d τ ] E p , s ( 0 , ξ ) ,
E p , s ( τ + δ τ , ξ ) = exp ( δ τ 2 D ) exp [ χ p , s ( τ ) δ τ ] exp ( δ τ 2 D ) × E p , s ( τ , ξ ) + O ( δ τ 3 ) .

Metrics