Abstract

We have measured the low-density characteristics of a magneto-optical trap for both isotopes of rubidium. Trapped-atom temperatures are measured by the time-of-flight technique and are similar to temperatures in optical molasses. They are below the Doppler limit in most cases and increase linearly with the ratio of laser intensity to laser detuning. A slight difference between the two isotopes is observed. The data agree well with three-dimensional, multistate, semiclassical simulations. Spring constants of the trap are inferred from careful measurements of the size of the trapped-atom cloud. The spring constant is seen to increase with intensity at low intensity, becoming independent of intensity at high intensity. This trend is consistent with sub-Doppler cooling mechanisms.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription