Abstract

Phase-matched second-harmonic generation is demonstrated in a four-layered polymeric waveguide structure. The waveguide consists of a glass substrate, a nonlinear-optical active poled polymer with a passive polymer as the waveguide core, and an air cover. The study of the linear-optical properties of this waveguide structure shows the possibility of substantially reducing the waveguide propagation loss. Second-harmonic generation experiments in transmission format show no loss in second-order susceptibility for the poled polymer layer after addition of the passive polymer layer. The independent variation of the thickness of the two polymer layers allows for simultaneous phase matching and tailoring of the second-order nonlinear-optical susceptibility for the optimal overlap integral of the fundamental and the second-harmonic modal field in the waveguide.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
    [Crossref]
  3. J. Zyss, “Nonlinear organic materials for integrated optics: a review,” J. Mol. Electron. 1, 25–45 (1985).
  4. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984).
    [Crossref]
  5. D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233(1983).
    [Crossref]
  6. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2, 139–141 (1978).
    [Crossref] [PubMed]
  7. M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
    [Crossref]
  8. Y. Okamura, S. Sato, and S. Yamamoto, “Simple method of measuring propagation properties of integrated optical waveguides: an improvement,” Appl. Opt. 24, 57–60 (1985).
    [Crossref] [PubMed]
  9. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
    [Crossref]
  10. R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
    [Crossref]
  11. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [Crossref]
  12. W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Engl. 8, 177–188 (1969).
    [Crossref]
  13. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
    [Crossref]
  14. G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
    [Crossref]
  15. D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).
  16. K. Clays and J. S. Schildkraut, “Dispersion of the complex electro-optic coefficient and electrochromic effects in poled polymer films,” J. Opt. Soc. Am. B 9, 2274–2282 (1993).
    [Crossref]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 749–763.
  18. F. Zernike, “Fabrication and measurement of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), pp. 201–241.
  19. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt. 25, 4413–4416 (1986).
    [Crossref] [PubMed]
  20. J. A. Giacometi and J. S. C. Campos, “Constant current corona triode with grid voltage control. Application to polymer foil charging,” Rev. Sci. Instrum. 61, 1143 (1990).
    [Crossref]
  21. R. Gerhard-Malhaupt and W. Petry, “High-resolution probing of surface-charge distributions on electret samples,” J. Phys. E 16, 418 (1983).
    [Crossref]
  22. C. W. Pitt and L. M. Walpita, “Lightguiding in Langmuir–Blodgett films,” Thin Solid Films 68, 101–127 (1980).
    [Crossref]
  23. E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
    [Crossref]

1993 (2)

D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).

K. Clays and J. S. Schildkraut, “Dispersion of the complex electro-optic coefficient and electrochromic effects in poled polymer films,” J. Opt. Soc. Am. B 9, 2274–2282 (1993).
[Crossref]

1992 (1)

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

1990 (6)

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

J. A. Giacometi and J. S. C. Campos, “Constant current corona triode with grid voltage control. Application to polymer foil charging,” Rev. Sci. Instrum. 61, 1143 (1990).
[Crossref]

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[Crossref]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

1989 (2)

G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

1986 (1)

1985 (2)

1983 (2)

D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233(1983).
[Crossref]

R. Gerhard-Malhaupt and W. Petry, “High-resolution probing of surface-charge distributions on electret samples,” J. Phys. E 16, 418 (1983).
[Crossref]

1980 (1)

C. W. Pitt and L. M. Walpita, “Lightguiding in Langmuir–Blodgett films,” Thin Solid Films 68, 101–127 (1980).
[Crossref]

1978 (1)

1969 (1)

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Engl. 8, 177–188 (1969).
[Crossref]

Bjorklund, G. C.

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Bosshard, C.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Campos, J. S. C.

J. A. Giacometi and J. S. C. Campos, “Constant current corona triode with grid voltage control. Application to polymer foil charging,” Rev. Sci. Instrum. 61, 1143 (1990).
[Crossref]

Clays, K.

Eich, M.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Fejer, M. M.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Feuer, B.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Flörsheimer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Gerhard-Malhaupt, R.

R. Gerhard-Malhaupt and W. Petry, “High-resolution probing of surface-charge distributions on electret samples,” J. Phys. E 16, 418 (1983).
[Crossref]

Giacometi, J. A.

J. A. Giacometi and J. S. C. Campos, “Constant current corona triode with grid voltage control. Application to polymer foil charging,” Rev. Sci. Instrum. 61, 1143 (1990).
[Crossref]

Gibson, U. J.

Günter, P.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Haas, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Himel, M. D.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984).
[Crossref]

Inaba, H.

Ito, H.

Jurich, M. C.

Karim, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Khanarian, G.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[Crossref]

Küpfer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Lim, E. J.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Liptay, W.

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Engl. 8, 177–188 (1969).
[Crossref]

Looser, H.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Matsumoto, S.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Meijer, W. E.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

Nijhuis, S.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

Norwood, R. A.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[Crossref]

Okamura, Y.

Page, R. H.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 749–763.

Perry, R. J.

D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).

Petry, W.

R. Gerhard-Malhaupt and W. Petry, “High-resolution probing of surface-charge distributions on electret samples,” J. Phys. E 16, 418 (1983).
[Crossref]

Pitt, C. W.

C. W. Pitt and L. M. Walpita, “Lightguiding in Langmuir–Blodgett films,” Thin Solid Films 68, 101–127 (1980).
[Crossref]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Reck, B.

Rikken, G. L. J. A.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

Robello, D. R.

D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).

Sato, S.

Schildkraut, J. S.

Sen, A.

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Seppen, C. J. E.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

Stegeman, G. I.

Stolen, R. H.

Swalen, J. D.

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Twieg, R.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Twieg, R. J.

Urankar, E. J.

D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).

Walpita, L. M.

C. W. Pitt and L. M. Walpita, “Lightguiding in Langmuir–Blodgett films,” Thin Solid Films 68, 101–127 (1980).
[Crossref]

Williams, D. J.

D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233(1983).
[Crossref]

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Willson, C. G.

Yamamoto, S.

Yoon, D. Y.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

Zernike, F.

F. Zernike, “Fabrication and measurement of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), pp. 201–241.

Zyss, J.

J. Zyss, “Nonlinear organic materials for integrated optics: a review,” J. Mol. Electron. 1, 25–45 (1985).

Adv. Mater. (1)

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Engl. 8, 177–188 (1969).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase-matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and W. E. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1990).
[Crossref]

Electron. Lett. (1)

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[Crossref]

J. Appl. Phys. (1)

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559–2567 (1989).
[Crossref]

J. Mol. Electron. (1)

J. Zyss, “Nonlinear organic materials for integrated optics: a review,” J. Mol. Electron. 1, 25–45 (1985).

J. Opt. Soc. Am. B (3)

J. Phys. E (1)

R. Gerhard-Malhaupt and W. Petry, “High-resolution probing of surface-charge distributions on electret samples,” J. Phys. E 16, 418 (1983).
[Crossref]

Macromolecules (1)

D. R. Robello, R. J. Perry, and E. J. Urankar, “Linear polymers for nonlinear optics. 3. Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation and coupling reactions,” Macromolecules 25, 2940–2944 (1993).

Nonlinear Optical Properties of Organic and Polymeric Materials (1)

D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233(1983).
[Crossref]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

J. A. Giacometi and J. S. C. Campos, “Constant current corona triode with grid voltage control. Application to polymer foil charging,” Rev. Sci. Instrum. 61, 1143 (1990).
[Crossref]

Thin Solid Films (1)

C. W. Pitt and L. M. Walpita, “Lightguiding in Langmuir–Blodgett films,” Thin Solid Films 68, 101–127 (1980).
[Crossref]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 749–763.

F. Zernike, “Fabrication and measurement of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), pp. 201–241.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Molecular structure of the NLO polymers used in the experiments: (a) stilbene NLO polymer; (b) phenyl NLO polymer.

Fig. 2
Fig. 2

Absorption spectra for the stilbene (S) and the phenyl (P) NLO polymers. Solid curves, left axis: absorption spectrum of 0.02 wt. % in DMAC. Dotted curve, right axis: absorption spectrum of 25 wt. % in DMAC.

Fig. 3
Fig. 3

Dispersion of the refractive index for filled squares, stilbene NLO polymer; filled circles, polystyrene; filled triangles, phenyl NLO polymer. The solid curves represent the Sellmeier fit to the data. The single- and double-term Sellmeier equations are given in the text. The parameters for a fit to a single- or a double-term Sellmeier equation are given in Table 1.

Fig. 4
Fig. 4

(a) Structure of the four-layered waveguide (0.6- μm-thick phenyl NLO polymer film, hatched, and 1.5- μm-thick polystyrene film as the waveguide core on fused silica) and field distribution for the m = 1 TM mode at 457.9 nm. (b) Two-dimensional intensity profile of the light scattered out of the m = 1 TM mode at 457.9 nm in the four-layered waveguide shown in (a).

Fig. 5
Fig. 5

Dependence of calculated (filled symbols) and experimental (open symbols) waveguide attenuation on mode number for the three-layered waveguide structure (1.61-μm-thick phenyl NLO polymer film, circles) and for the four-layered waveguide (0.6-μm-thick phenyl NLO polymer film and 1.5-μm-thick poly-styrene film as the waveguide core, squares) on fused silica at 457.9 nm.

Fig. 6
Fig. 6

Absorption spectra of a three-layered waveguide film (0.28-μm-thick film of the stilbene NLO polymer as the waveguide core) before (dashed curve) and after poling (solid curve).

Fig. 7
Fig. 7

Quadratic dependence of the second-harmonic intensity (532 nm) on the fundamental intensity (1064 nm) in a transmission SHG experiment with incidence angle 45° for the stilbene NLO polymer.

Fig. 8
Fig. 8

Absorption spectra of a four-layered waveguide (0.37- μm-thick stilbene NLO polymer film and 0.38-μm-thick polystyrene film as the waveguide core) after different processing steps: a, after spin coating of the stilbene NLO polymer layer and baking out of residual solvent overnight in a vacuum oven at Tg + 10 °C; b, after 30-min corona poling with a 5.27-kV corona discharge voltage and a 37-V grid voltage at 121 °C and c, after 2-h corona poling under identical conditions; d, after spin coating of the NLO passive polystyrene layer, before baking; e, after rebaking of the final structure at 90 °C.

Fig. 9
Fig. 9

Second-harmonic intensity as a function of incidence angle for the fundamental beam in the transmission format. Open circles, background signal from the ITO-coated Pyrex substrate; open squares, SHG signal for a 0.37- μm-thick poled stilbene polymer film; filled squares, SHG signal for the same poled polymer film, after spin coating and baking of the 0.38-μm-thick polystyrene film on top of the poled stilbene film.

Fig. 10
Fig. 10

Structure of the four-layered waveguide (0.15-μm-thick stilbene NLO polymer film, hatched, covered with 0.33-μm-thick polystyrene layer) with the thicknesses of the two polymer films optimized simultaneously for phase matching and the overlap integral and field distribution maximized for the m = 0 TM fundamental mode and n = 1 TM second-harmonic mode.

Fig. 11
Fig. 11

Wavelength dependence of the second-harmonic intensity generated in the four-layered waveguide format. Open circles, theoretical values calculated based on the dispersion of the refractive indices, given in Table 1, and the thicknesses of the two polymer films (0.15 μm for the NLO active polymer film and 0.33 μm for the polystyrene film); filled squares, experimentally determined values.

Tables (5)

Tables Icon

Table 1 Refractive Indices for the Wavelengths Used, Sellmeier-Fit Parameters, and Film Thickness tf for Polystyrene and NLO Polymer Three-Layered Waveguides Useda

Tables Icon

Table 2 Refractive Indices and Extinction Coefficients Used in the Calculations

Tables Icon

Table 3 Experimental and Calculated Waveguide Losses for Three- and Four-Layered Waveguides for Phenyl NLO Polymer and Polystyrene for Various Mode Numbers at 457.9 nma

Tables Icon

Table 4 Polymer Thicknesses (μm)

Tables Icon

Table 5 Parameters for the Phase-Matched Four-Layered Waveguide Shown in Fig. 10

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K m , n SHG = 0 ( d i j k / d eff ) E m , i ( 1 ) ( z ) E m , j ( 1 ) ( z ) E n , k ( 2 ) ( z ) d z ,
α m L = i α i P i , m P i , m / i P i , m
p i = P i / i P i ,
n 2 = A + f λ 2 / ( λ 2 - λ 0 2 ) ,
n 2 = A + f 1 λ 2 / ( λ 2 - λ 0 , 1 2 ) + f 2 λ 2 / ( λ 2 - λ 0 , 2 2 ) ,
L max = 2 / [ d ( Δ k / d ) ] .

Metrics