Abstract

Sr5(PO4)3F (S-FAP) has been investigated as a new Yb-doped laser crystal belonging to the apatite structural family. The spectroscopy of the Yb3+ ion and the laser properties of the medium have been investigated. The maximum absorption cross section of Yb in S-FAP is 8.6 × 10−20 cm2, and the maximum emission cross section is 7.3 × 10−20 cm2. The measured emission lifetime of Yb3+ is 1.26 ms. An Yb:S-FAP laser has been demonstrated with a Ti:sapphire laser pump operating at 899 nm. The Yb:S-FAP laser was measured to have slope efficiencies as high as 71%. The spectroscopy and laser studies are reported, as well as certain thermal, mechanical, and optical properties.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
    [CrossRef]
  2. W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990).
    [CrossRef]
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089–1091 (1991).
    [CrossRef] [PubMed]
  4. R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
    [CrossRef]
  5. D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
    [CrossRef]
  6. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]
  7. S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).
  8. W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).
  9. A. G. Cockbain, "The crystal chemistry of the apatites," Mineral. Mag. 36, 654–660 (1968).
    [CrossRef]
  10. E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).
  11. Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).
  12. A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).
  13. P. D. Johnson, "Some optical properties of powder and crystal halophosphate phosphors," J. Electrochem. Soc. 108, 159–162 (1961).
    [CrossRef]
  14. R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
    [CrossRef]
  15. R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).
  16. R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969).
    [CrossRef]
  17. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, "Thermomechanical and thermooptical properties of the LiCaAlF6:Cr3+ laser material," J. Opt. Soc. Am. B 8, 970–977 (1991).
    [CrossRef]
  18. L. W. Tilton, "Testing and accurate use of Abbé-type refrac-tometers," J. Opt. Soc. Am. 32, 371–382 (1942).
    [CrossRef]
  19. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazel-sky, N. T. Melamed, E. P. Riedel, and G. W. Roland, "Laser properties of Nd3+ and Ho3+ doped crystals with the apatite structure," Appl. Opt. 11, 999–1012 (1972).
    [CrossRef] [PubMed]
  20. R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
    [CrossRef]
  21. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102–114 (1986).
    [CrossRef]
  22. D. McConnell, Apatite: Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences (Springer-Verlag, Berlin, 1973), p. 90.
  23. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]

1993

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

1991

1990

W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990).
[CrossRef]

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

1988

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

1986

1972

1971

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

1970

A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).

E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).

1969

R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969).
[CrossRef]

1968

R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
[CrossRef]

R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).

A. G. Cockbain, "The crystal chemistry of the apatites," Mineral. Mag. 36, 654–660 (1968).
[CrossRef]

1961

P. D. Johnson, "Some optical properties of powder and crystal halophosphate phosphors," J. Electrochem. Soc. 108, 159–162 (1961).
[CrossRef]

1942

Aggarwal, R. L.

Anderson, N. G.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Bednarz, J. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Bour, D. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Brown, R. M.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

Caird, J. A.

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990).
[CrossRef]

Choi, H. K.

Cockbain, A. G.

A. G. Cockbain, "The crystal chemistry of the apatites," Mineral. Mag. 36, 654–660 (1968).
[CrossRef]

Damon, D. H.

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

Davis, L. E.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Ettenberg, M.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Fabian, K. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Fan, T. Y.

Gilbert, D. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Henningsen, T.

Holton, W. C.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

Hopkins, R. H.

K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazel-sky, N. T. Melamed, E. P. Riedel, and G. W. Roland, "Laser properties of Nd3+ and Ho3+ doped crystals with the apatite structure," Appl. Opt. 11, 999–1012 (1972).
[CrossRef] [PubMed]

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969).
[CrossRef]

R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).

Hsieh, K. Y.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Hughes, R. S.

Hummel, F. A.

E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).

Johnson, P. D.

P. D. Johnson, "Some optical properties of powder and crystal halophosphate phosphors," J. Electrochem. Soc. 108, 159–162 (1961).
[CrossRef]

Kaplyanskii, A. A.

A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).

Kolbas, R. M.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Kramer, W. E.

R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969).
[CrossRef]

R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).

Kreidler, E. R.

E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990).
[CrossRef]

W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Kuzminov, E. G.

A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Lacovara, P.

Laidig, W. D.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Lo, Y. C.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Maksimova, G. V.

Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).

Marion, J. E.

Mazelsky, R.

R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
[CrossRef]

R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).

Mazel-sky, R.

McConnell, D.

D. McConnell, Apatite: Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences (Springer-Verlag, Berlin, 1973), p. 90.

Melamed, N. T.

Moulton, P. F.

Ohlmann, R. C.

R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, "Thermomechanical and thermooptical properties of the LiCaAlF6:Cr3+ laser material," J. Opt. Soc. Am. B 8, 970–977 (1991).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Piotrowski, P.

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

Reinberg, A. R.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

Riedel, E. P.

Riseberg, L. A.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

Roland, G. W.

Shinn, M. D.

Sin, Y.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Sobol, A. A.

Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).

Steinbruegge, K.

R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
[CrossRef]

Steinbruegge, K. B.

Stokowski, S. E.

Tassano, J. B.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

Tilton, L. W.

Uphoff, J. H.

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

Verlijsdonk, J. G.

W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).

Voronko, Y. K

Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).

Vrugt, J. W. ter

W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).

Wacker, R. W.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

Walker, M. S.

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

Wang, C. A.

Wanmaker, W. L.

W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).

Woods, B. W.

Yang, Y. J.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

Am. Mineral.

E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).

Appl. Opt.

Appl. Phys. Lett.

A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971).
[CrossRef]

IEEE J. Quantum Electron.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

IEEE Quantum Electron.

R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988).
[CrossRef]

J. Appl. Phys.

R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971).
[CrossRef]

J. Cryst. Growth

R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).

J. Electrochem. Soc.

R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969).
[CrossRef]

P. D. Johnson, "Some optical properties of powder and crystal halophosphate phosphors," J. Electrochem. Soc. 108, 159–162 (1961).
[CrossRef]

R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Mineral. Mag.

A. G. Cockbain, "The crystal chemistry of the apatites," Mineral. Mag. 36, 654–660 (1968).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990).
[CrossRef]

Opt. Spectrosc. USSR

Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).

A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).

Phillips Res. Rep.

W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).

Other

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).

D. McConnell, Apatite: Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences (Springer-Verlag, Berlin, 1973), p. 90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption and emission spectra of Yb:S-FAP with Ec. The pump band is at 899 nm, and the energy extraction occurs at 1047 nm.

Fig. 2
Fig. 2

Absorption and emission spectra of Yb:S-FAP with Ec.

Fig. 3
Fig. 3

Emission lifetime data obtained for Yb:S-FAP. The excitation wavelength is 899 nm, and the emission wavelength is 1047 nm.

Fig. 4
Fig. 4

Schematic of the experimental setup used to assess the cw laser performance of Yb:S-FAP in a nearly concentric resonator.

Fig. 5
Fig. 5

Efficiency data for Yb:S-FAP crystal. Representative data are given for three different output couplers. A summary of all the experimental runs is given in Table 3.

Fig. 6
Fig. 6

Inverse slope efficiency plotted against the inverse output coupling for the Yb:S-FAP crystal. The intrinsic slope efficiency η0 and double-pass loss Ld are determined according to Eq. (7).

Tables (3)

Tables Icon

Table 1 Thermomechanical Data for Sr5(PO4)3F at25 °C

Tables Icon

Table 2 Spectroscopic and Laser Parameters of Yb3+ in Several Crystals

Tables Icon

Table 3 Slope Efficiency and Threshold Data for Yb:S-FAP Laser

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F ext = h c / ( σ em λ ext ) ,
β min = σ abs ( λ ext ) σ em ( λ ext ) + σ abs ( λ ext ) .
β min = { 1 + ( Z l / Z u ) exp [ ( E ZL h c / λ ) / k T ] } 1 ,
I sat = h c / ( λ p σ p τ em ) .
I min = β min I sat .
( 1 F nl ) ( P 1 / P nl ) = ( 1 F 1 ) .
η = η 0 ( T T + L d ) .

Metrics