Abstract

We present a theoretical and experimental investigation into the generation of subpicosecond pulses of terahertz radiation from large-aperture biased photoconductors with 1.5-eV photon excitation. A model that describes the far-field radiation from the optically excited, biased photoconductor is developed. The peak of the radiated electric field as well as waveforms are presented as a function of optical excitation fluence and pulse width. The dependence of the terahertz radiation from biased InP and GaAs emitters on the applied bias field and on incident optical fluence for bias fields as high as 12 kV/cm and for optical fluences of 0.01–1.0 mJ/cm2 is presented. For a given level of optical excitation the radiated electric field is predicted by theory to scale linearly with the applied bias field. This prediction is verified experimentally, with radiated-field strengths as high as 1.23 ± 0.13 kV/cm being demonstrated. The radiated electric field also exhibits the monotonic saturation behavior predicted by theory, and saturation fluences of 0.058 ± 0.015 and 0.018 ± 0.008 mJ/cm2 are obtained for InP and GaAs emitters, respectively.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
    [Crossref]
  2. G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
    [Crossref]
  3. G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
    [Crossref]
  4. R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
    [Crossref]
  5. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
    [Crossref]
  6. Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
    [Crossref]
  7. Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
    [Crossref]
  8. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
    [Crossref]
  9. A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
    [Crossref]
  10. A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
    [Crossref]
  11. Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
    [Crossref]
  12. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
    [Crossref]
  13. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
    [Crossref]
  14. Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
    [Crossref]
  15. D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
    [Crossref]
  16. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
    [Crossref]
  17. B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
    [Crossref]
  18. X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
    [Crossref]
  19. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
    [Crossref]
  20. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972 (1991).
    [Crossref]
  21. B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
    [Crossref] [PubMed]
  22. L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
    [Crossref]
  23. N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
    [Crossref]
  24. B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
    [Crossref]
  25. N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
    [Crossref]
  26. X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768 (1991).
    [Crossref]
  27. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
    [Crossref]
  28. X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
    [Crossref]
  29. Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
    [Crossref]
  30. Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
    [Crossref]
  31. Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
    [Crossref]
  32. G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
    [Crossref]
  33. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
    [Crossref]
  34. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
    [Crossref]
  35. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694 (1990).
    [Crossref]
  36. M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140 (1990).
    [Crossref]
  37. D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055 (1990).
    [Crossref]
  38. J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
    [Crossref]
  39. M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
    [Crossref]
  40. M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
    [Crossref] [PubMed]
  41. M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
    [Crossref]
  42. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
    [Crossref] [PubMed]
  43. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of terahertz radiation,” J. Opt. Soc. Am. B 8, 1642 (1991).
    [Crossref]
  44. X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
    [Crossref]
  45. X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326 (1992).
    [Crossref]
  46. B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
    [Crossref] [PubMed]
  47. P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
    [Crossref]
  48. B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
    [Crossref]
  49. B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
    [Crossref]
  50. J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
    [Crossref] [PubMed]
  51. J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
    [Crossref]
  52. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
    [Crossref]
  53. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290 (1993).
    [Crossref] [PubMed]
  54. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
    [Crossref] [PubMed]
  55. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 1, p. 20.
  56. J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474 (1963).
    [Crossref]
  57. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 8, p. 113.
  58. J. R. Morris and Y. R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Opt. Commun. 3, 81 (1971).
    [Crossref]
  59. Y. R. Shen, “Far-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207 (1976).
    [Crossref]
  60. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143 (1977).
    [Crossref]
  61. P. N. Saeta, B. I. Greene, and S. L. Chuang, “Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing,” Appl. Phys. Lett. 63, 3482 (1993).
    [Crossref]
  62. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap 6, p. 218.
  63. Ref. 62, Chap. 6, p. 222.
  64. Ref. 62, Chap. 9, p. 392.
  65. A. J. Taylor, P. K. Benicewicz, and S. M. Young, “Modeling of femtosecond electromagnetic pulses from large-aperture photoconductors,” Opt. Lett. 18, 1340 (1993).
    [Crossref] [PubMed]
  66. P. K. Benicewicz and A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased InP photoconductors,” Opt. Lett. 18, 1332 (1993).
    [Crossref]
  67. P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Generation of 39-fs pulses at 815 nm with a synchronously pumped mode-locked dye laser,” Opt. Lett. 16, 925 (1991).
    [Crossref] [PubMed]
  68. J. P. Roberts, P. K. Benicewicz, and A. J. Taylor, “Synchronously pumped femtosecond dye oscillator-amplifier system at 815 nm,” Opt. Commun. 90, 287 (1992).
    [Crossref]
  69. G. Y. Robinson, “Metallurgical and electrical properties of alloyed Ni/Au–Ge films on n-type GaAs,” Solid State Electron. 18, 331 (1975).
    [Crossref]
  70. M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
    [Crossref]
  71. A. Christou, “Solid phase formation in Au:Ge/Ni, Ag/In/Ge, In/Au:Ge GaAs ohmic contact systems,” Solid-State Electron. 22, 141 (1979).
    [Crossref]
  72. M. Ogawa, “Alloying behavior of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406 (1980).
    [Crossref]
  73. F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
    [Crossref]
  74. S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
    [Crossref]
  75. Ref. 62, Chap. 7, p. 281.
  76. Ref. 62, Chap. 7, p. 282.
  77. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966), Chap. 10, p. 263.
  78. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 849.
  79. X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
    [Crossref] [PubMed]
  80. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Coherent generation of far-infrared radiation from InP,” J. Opt. Soc. Am. B 11, 486 (1994).
    [Crossref]

1994 (1)

1993 (4)

1992 (10)

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326 (1992).
[Crossref]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

J. P. Roberts, P. K. Benicewicz, and A. J. Taylor, “Synchronously pumped femtosecond dye oscillator-amplifier system at 815 nm,” Opt. Commun. 90, 287 (1992).
[Crossref]

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
[Crossref]

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

1991 (18)

X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768 (1991).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972 (1991).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
[Crossref] [PubMed]

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Generation of 39-fs pulses at 815 nm with a synchronously pumped mode-locked dye laser,” Opt. Lett. 16, 925 (1991).
[Crossref] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
[Crossref]

J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
[Crossref]

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of terahertz radiation,” J. Opt. Soc. Am. B 8, 1642 (1991).
[Crossref]

J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
[Crossref] [PubMed]

1990 (13)

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
[Crossref] [PubMed]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
[Crossref]

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140 (1990).
[Crossref]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055 (1990).
[Crossref]

1989 (6)

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

1988 (4)

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
[Crossref]

1987 (3)

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
[Crossref]

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

1983 (1)

R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
[Crossref]

1981 (2)

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
[Crossref]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

1980 (1)

M. Ogawa, “Alloying behavior of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406 (1980).
[Crossref]

1979 (1)

A. Christou, “Solid phase formation in Au:Ge/Ni, Ag/In/Ge, In/Au:Ge GaAs ohmic contact systems,” Solid-State Electron. 22, 141 (1979).
[Crossref]

1977 (2)

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143 (1977).
[Crossref]

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

1976 (1)

Y. R. Shen, “Far-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207 (1976).
[Crossref]

1975 (1)

G. Y. Robinson, “Metallurgical and electrical properties of alloyed Ni/Au–Ge films on n-type GaAs,” Solid State Electron. 18, 331 (1975).
[Crossref]

1971 (1)

J. R. Morris and Y. R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Opt. Commun. 3, 81 (1971).
[Crossref]

1963 (1)

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474 (1963).
[Crossref]

Angelopoulos, M.

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

Antonetti, A.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

Arjavalingam, G.

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

Auston, D. H.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326 (1992).
[Crossref]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
[Crossref]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768 (1991).
[Crossref]

J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
[Crossref] [PubMed]

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
[Crossref]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
[Crossref] [PubMed]

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Benicewicz, P. K.

Bhushan, M.

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

Bloembergen, N.

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474 (1963).
[Crossref]

Blumenthal, D.

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
[Crossref]

Boden, E. P.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Bucksbaum, P. H.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Chi, C.-C.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
[Crossref]

Christou, A.

A. Christou, “Solid phase formation in Au:Ge/Ni, Ag/In/Ge, In/Au:Ge GaAs ohmic contact systems,” Solid-State Electron. 22, 141 (1979).
[Crossref]

Chuang, S. L.

P. N. Saeta, B. I. Greene, and S. L. Chuang, “Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing,” Appl. Phys. Lett. 63, 3482 (1993).
[Crossref]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

Chwalek, J. M.

J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
[Crossref]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
[Crossref]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
[Crossref] [PubMed]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

DeFonzo, A. P.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
[Crossref]

Draper, N. R.

N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966), Chap. 10, p. 263.

Ducuing, J.

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474 (1963).
[Crossref]

Dykaar, D. R.

D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Coherent generation of far-infrared radiation from InP,” J. Opt. Soc. Am. B 11, 486 (1994).
[Crossref]

D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290 (1993).
[Crossref] [PubMed]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
[Crossref] [PubMed]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
[Crossref]

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

Federici, J. F.

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
[Crossref] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
[Crossref]

Froberg, N.

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

Froberg, N. M.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

Goossen, K. W.

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

Gordon, J. P.

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

Greene, B. I.

P. N. Saeta, B. I. Greene, and S. L. Chuang, “Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing,” Appl. Phys. Lett. 63, 3482 (1993).
[Crossref]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
[Crossref] [PubMed]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
[Crossref]

Grischkowsky, D.

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of terahertz radiation,” J. Opt. Soc. Am. B 8, 1642 (1991).
[Crossref]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972 (1991).
[Crossref]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140 (1990).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
[Crossref]

Grischkowsky, D. R.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

Halbout, J.-M.

Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

Harde, H.

H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of terahertz radiation,” J. Opt. Soc. Am. B 8, 1642 (1991).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

Heidemann, R.

R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
[Crossref]

Hu, B. B.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
[Crossref] [PubMed]

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
[Crossref]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap 6, p. 218.

Jäger, D.

R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
[Crossref]

Jahali, B.

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

Jarwala, M.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

Jin, Y.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

Jones, R. R.

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055 (1990).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 1, p. 20.

Knudsen, J. F.

S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
[Crossref]

Kopcsay, G. V.

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

Kopf, R. F.

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

Levi, A. F. J.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48 (1991).
[Crossref] [PubMed]

Littlewood, P. B.

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

Lu, T.-M.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Lutz, C.

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

Lutz, C. R.

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

Ma, X. F.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Mack, M.

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

Mankiewich, P. M.

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

Mayer, J. W.

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

Morris, J. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143 (1977).
[Crossref]

J. R. Morris and Y. R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Opt. Commun. 3, 81 (1971).
[Crossref]

Morse, J. D.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

Moss, S. C.

S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
[Crossref]

Mourou, G.

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
[Crossref]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

Mourou, G. A.

J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
[Crossref]

Nicolet, M.-A.

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

Nuss, M. C.

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
[Crossref]

O’Malley, M. L.

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

Ogawa, M.

M. Ogawa, “Alloying behavior of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406 (1980).
[Crossref]

Orszag, A.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

Pastol, Y.

Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
[Crossref]

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

Pfeiffer, L.

Pfeiffer, L. N.

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

Pfeiffer, Th.

R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
[Crossref]

Phelps, P. D.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Pretorius, R.

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972 (1991).
[Crossref]

Roberts, J. P.

J. P. Roberts, P. K. Benicewicz, and A. J. Taylor, “Synchronously pumped femtosecond dye oscillator-amplifier system at 815 nm,” Opt. Commun. 90, 287 (1992).
[Crossref]

P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Generation of 39-fs pulses at 815 nm with a synchronously pumped mode-locked dye laser,” Opt. Lett. 16, 925 (1991).
[Crossref] [PubMed]

Robinson, G. Y.

G. Y. Robinson, “Metallurgical and electrical properties of alloyed Ni/Au–Ge films on n-type GaAs,” Solid State Electron. 18, 331 (1975).
[Crossref]

Saeta, P. N.

P. N. Saeta, B. I. Greene, and S. L. Chuang, “Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing,” Appl. Phys. Lett. 63, 3482 (1993).
[Crossref]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

Schmidt, M. T.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

Schmitt-Rink, S.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

Schowalter, L. J.

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

Shen, Y. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143 (1977).
[Crossref]

Y. R. Shen, “Far-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207 (1976).
[Crossref]

J. R. Morris and Y. R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Opt. Commun. 3, 81 (1971).
[Crossref]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 8, p. 113.

Smith, D. D.

S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
[Crossref]

Smith, H.

N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966), Chap. 10, p. 263.

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Stancampiano, C. V.

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
[Crossref]

Stewart, K. R.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 849.

Taylor, A. J.

Tham, P.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

Theophilou, N.

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

van Exter, M.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140 (1990).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

Westerwick, E. H.

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

Whitaker, J. F.

J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
[Crossref]

Wittmer, M.

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

Xin, S. H.

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
[Crossref]

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

Yakymyshyn, C. P.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Yang, E. S.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

Yang, K.

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

You, D.

Young, S. M.

Zhang, X.-C.

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326 (1992).
[Crossref]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
[Crossref]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768 (1991).
[Crossref]

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
[Crossref] [PubMed]

J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
[Crossref]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323 (1990).
[Crossref] [PubMed]

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

Appl. Phys. Lett. (32)

B. B. Hu, J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
[Crossref]

G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470 (1981).
[Crossref]

G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295 (1981).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[Crossref]

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490 (1989).
[Crossref]

A. P. DeFonzo, M. Jarwala, and C. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155 (1987).
[Crossref]

A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212 (1987).
[Crossref]

D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl. Phys. Lett. 59, 262 (1991).
[Crossref]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011 (1990).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 57, 2629 (1990).
[Crossref]

X.-C. Zhang, B. B. Hu, S. H. Xin, and D. H. Auston, “Optically induced femtosecond electromagnetic pulses from GaSb/AlSb strained-layer superlattices,” Appl. Phys. Lett. 57, 753 (1990).
[Crossref]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222 (1991).
[Crossref]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972 (1991).
[Crossref]

L. Xu, X.-C. Zhang, D. H. Auston, and B. Jahali, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. 59, 3357 (1991).
[Crossref]

N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston, “500 GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446 (1991).
[Crossref]

B. B. Hu, N. Froberg, M. Mack, X.-C. Zhang, and D. H. Auston, “Electrically controlled frequency scanning by a photoconducting antenna array,” Appl. Phys. Lett. 58, 1369 (1991).
[Crossref]

X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768 (1991).
[Crossref]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784 (1992).
[Crossref]

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 3080 (1992).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277 (1989).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694 (1990).
[Crossref]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055 (1990).
[Crossref]

M. C. Nuss, K. W. Goossen, P. M. Mankiewich, and M. L. O’Malley, “Terahertz surface impedance of thin YBa2Cu3O7superconducting films,” Appl. Phys. Lett. 58, 2561 (1991).
[Crossref]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477 (1992).
[Crossref]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, “Interferometric characterization of 160 fs far-infrared light pulses,” Appl. Phys. Lett. 59, 893 (1991).
[Crossref]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 2228 (1990).
[Crossref]

J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25 (1991).
[Crossref]

P. N. Saeta, B. I. Greene, and S. L. Chuang, “Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing,” Appl. Phys. Lett. 63, 3482 (1993).
[Crossref]

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460 (1987).
[Crossref]

Electron. Lett. (5)

J. M. Chwalek, J. F. Whitaker, and G. A. Mourou, “Submillimetre wave response of superconducting YBa2Cu3O7−x using coherent time-domain spectroscopy,” Electron. Lett. 27, 447 (1991).
[Crossref]

Y. Pastol, G. Arjavalingam, and J.-M. Halbout, “Characterisation of an optoelectronically pulsed equiangular spiral antenna,” Electron. Lett. 26, 133 (1990).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523 (1989).
[Crossref]

Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318 (1988).
[Crossref]

R. Heidemann, Th. Pfeiffer, and D. Jäger, “Optoelectronically pulsed slot-line antennas,” Electron. Lett. 19, 316 (1983).
[Crossref]

IEEE J. Quantum Electron. (4)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
[Crossref]

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291 (1992).
[Crossref]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
[Crossref]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

J. Appl. Phys. (3)

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326 (1992).
[Crossref]

M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” J. Appl. Phys. 70, 2238 (1991).
[Crossref]

M. Ogawa, “Alloying behavior of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406 (1980).
[Crossref]

J. Chem. Phys. (1)

G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, and M. Angelopoulos, “Anisotropic conductivity in stretch-oriented polymers measured with coherent microwave transient spectroscopy,” J. Chem. Phys. 93, 6 (1990).
[Crossref]

J. Mod. Opt. (1)

S. C. Moss, J. F. Knudsen, and D. D. Smith, “Linearity of response of ultrafast photoconductive switches: critical dependence upon ion-implantation and fabrication conditions,” J. Mod. Opt. 35, 2007 (1988).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

J. P. Roberts, P. K. Benicewicz, and A. J. Taylor, “Synchronously pumped femtosecond dye oscillator-amplifier system at 815 nm,” Opt. Commun. 90, 287 (1992).
[Crossref]

J. R. Morris and Y. R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Opt. Commun. 3, 81 (1971).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143 (1977).
[Crossref]

Phys. Rev. B (1)

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140 (1990).
[Crossref]

Phys. Rev. Lett. (6)

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709 (1991).
[Crossref] [PubMed]

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474 (1963).
[Crossref]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102 (1992).
[Crossref] [PubMed]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7superconductors,” Phys. Rev. Lett. 66, 3305 (1991).
[Crossref] [PubMed]

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 2303 (1992).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

Y. R. Shen, “Far-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207 (1976).
[Crossref]

Solid State Electron. (1)

G. Y. Robinson, “Metallurgical and electrical properties of alloyed Ni/Au–Ge films on n-type GaAs,” Solid State Electron. 18, 331 (1975).
[Crossref]

Solid-State Electron. (2)

M. Wittmer, R. Pretorius, J. W. Mayer, and M.-A. Nicolet, “Investigation of the Au-Ge-Ni system used for alloyed contacts to GaAs,” Solid-State Electron. 20, 433 (1977).
[Crossref]

A. Christou, “Solid phase formation in Au:Ge/Ni, Ag/In/Ge, In/Au:Ge GaAs ohmic contact systems,” Solid-State Electron. 22, 141 (1979).
[Crossref]

Other (9)

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap 6, p. 218.

Ref. 62, Chap. 6, p. 222.

Ref. 62, Chap. 9, p. 392.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 8, p. 113.

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 1, p. 20.

Ref. 62, Chap. 7, p. 281.

Ref. 62, Chap. 7, p. 282.

N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966), Chap. 10, p. 263.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 849.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Theoretical waveforms of the radiated electric field Erad(t) versus time for different incident optical fluences (Fopt). (An optical excitation pulse width of 250 fs is assumed.)

Fig. 2
Fig. 2

Theoretical waveforms of the radiated electric field Erad(t) versus time for different incident optical pulse widths (τ0). (A saturating optical fluence is assumed.)

Fig. 3
Fig. 3

Maximum value of Erad(t) versus incident optical fluence (Fopt) for different optical pulse widths (τ0).

Fig. 4
Fig. 4

Maximum value of Erad(t) versus incident optical pulse width (τ) for different optical fluences (Fopt).

Fig. 5
Fig. 5

Experimental setup for the generation and the detection of THz radiation from biased large-aperture emitters. BS, beam splitter.

Fig. 6
Fig. 6

Oscilloscope traces (line-drawing representations) of a high-voltage bias pulse (4.5 kV) applied to 0.5-cm-gap photoconductors (GaAs and InP) with the incident optical pulse (a) blocked and (b)–(e) unblocked. The extraction from the applied pulses is observed and compared for different optical fluences (1.0 and 0.15 mJ/cm2). div, Division.

Fig. 7
Fig. 7

Radiated electric field Erad(t) from a 0.5-cm-gap InP (100) emitter with Fopt = 0.65 mJ/cm2 and Eb = 8 kV/cm.

Fig. 8
Fig. 8

Radiated electric field Erad(t) from a 0.5-cm-gap GaAs (111) emitter with Fopt = 1.0 mJ/cm2 and Eb = 8 kV/cm.

Fig. 9
Fig. 9

Orientation of the applied electric field with respect to the crystallographic axes of an InP (100) photoconductor.

Fig. 10
Fig. 10

Radiated-electric-field strength versus orientation of the applied bias field for an InP (100) emitter with an excitation fluence of 1.01 mJ/cm2.

Fig. 11
Fig. 11

Radiated-electric-field strength versus orientation of the applied bias field for an InP (100) emitter with an excitation fluence of 0.012 mJ/cm2.

Fig. 12
Fig. 12

Orientation of the applied electric field with respect to the crystallographic axes of a GaAs (111) photoconductor.

Fig. 13
Fig. 13

Radiated-electric-field strength versus orientation of the applied bias field for a GaAs (111) emitter with an excitation fluence of 1.01 mJ/cm2.

Fig. 14
Fig. 14

Radiated-electric-field strength versus orientation of the applied bias field for a GaAs (111) emitter with an excitation fluence of 0.012 mJ/cm2.

Fig. 15
Fig. 15

Peak radiated electric field from a 0.5-cm-gap InP emitter as a function of the applied bias field Eb for different optical excitation fluences F. The solid lines are zero-intercept linear fits to the data.

Fig. 16
Fig. 16

Peak radiated electric field from a 0.5-cm-gap GaAs emitter as a function of the applied bias field Eb for different optical excitation fluences F. The lines are zero-intercept linear fits to the data.

Fig. 17
Fig. 17

Saturation curve for a 0.5-cm-gap InP large-aperture photoconductor: Erad(peak)/Eb versus optical fluence. The curve is the least-squares fit of Eq. (35) to the data, resulting in the estimates β1 = 0.11 and 1/β1 = 0.058 mJ/cm2, which is the saturation fluence.

Fig. 18
Fig. 18

Erad(peak) versus optical fluence for a 0.5-cm-gap InP large-aperture photoconductor, where Eb is 2, 6, 10, and 12 kV/cm. The curves are Eq. (35) times Eb, with β1 = 0.11 and 1/β1 = 0.058 mJ/cm2.

Fig. 19
Fig. 19

Saturation curve for a 0.5-cm-gap GaAs large-aperture photoconductor: Erad(peak)/Eb versus optical fluence. The curve is the least-squares fit of Eq. (35) to the data, resulting in the estimates β1 = 0.11 and 1/β1 = 0.018 mJ/cm2, which is the saturation fluence.

Fig. 20
Fig. 20

Erad(peak) versus optical fluence for a 0.5-cm-gap GaAs large-aperture photoconductor, where Eb is 2, 6, and 10 kV/cm. The curves are Eq. (35) times Eb, with β1 = 0.11 and 1/β1 = 0.018 mJ/cm2.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

P 0 = χ ( 2 ) ( 0 ; - ω , ω ) E ω 2 ,
χ ( 2 ) ( 0 ; - ω , ω ) = χ ( 3 ) ( 0 ; 0 , - ω , ω ) F ,
E = - ϕ - A t .
2 A - ɛ μ 2 A t 2 = - μ J ,
2 ϕ - ɛ μ 2 ϕ t 2 = - 1 ɛ ρ .
· ( × H ) = · J + ρ t 0.
· J = 0.
E rad ( t ) = - t A ( t ) .
E rad ( r , t ) = - 1 4 π ɛ 0 c 2 t J s ( r , t - r - r c ) r - r d a ,
r - r = r ( 1 - n ^ · r r ) r .
E rad ( r , t ) = - 1 4 π ɛ 0 c 2 A ( x 2 + y 2 + z 2 ) 1 / 2 d d t J s ( t - r c ) ,
E rad ( t ) 1 4 π ɛ 0 c 2 A z d d t J s ( t ) .
J s ( t ) = σ s ( t ) E b σ s ( t ) η 0 1 + n + 1 ,
σ s ( t ) = e ( 1 - R ) ω - t d t m ( t , t ) I opt ( t ) exp [ - ( t - t ) τ car ] ,
m ( t , t ) = m .
I opt ( t ) = I 0 exp ( - t 2 τ 2 ) .
σ s ( t ) = e ( 1 - R ) ω I 0 - t d t m exp ( - t 2 τ 2 ) .
E rad ( t ) = - E b 4 π ɛ 0 c 2 A z e ( 1 - R ) ω I 0 m exp ( - t 2 τ 2 ) × [ 1 + η 0 e ( 1 - R ) I 0 m ( n + 1 ) ω - t / τ τ exp ( - x 2 ) d x ] - 2 .
F opt = - I 0 exp ( - t 2 τ 2 ) d t = π I 0 τ E opt A ,
B = A e ( 1 - R ) m 4 π ɛ 0 c 2 z ω π             ( m 2 s / J ) ,
D = η 0 e ( 1 - R ) m ( n + 1 ) ω π             ( m 2 / J ) .
E rad ( t ) = - B E b F opt τ exp ( - t 2 τ 2 ) × [ 1 + D F opt - t / τ exp ( - x 2 ) d x ] - 2 .
j ( t p ) = t p E rad ( t ) σ d ( t - t p ) d t .
σ d ( t - t p ) = { 0 if t p > t σ 0 τ d exp [ - ( t - t p ) τ d ] if t p t ,
σ d ( t - t p ) = { 0 if t p > t σ 0 τ d if t p t .
j ( t p ) = σ 0 τ d t p E rad ( t ) d t .
j σ 0 2 τ d - E rad ( t ) d t .
j = - σ 0 2 τ d B E b F opt τ - exp ( - t 2 τ 2 ) × [ 1 + D F opt - t / τ exp ( - x 2 ) d x ] - 2 d t .
2 n n + 1 .
j = - σ 0 C E b F / F s 1 + ( F / F s ) ,
F s = ( n + 1 ) ω η 0 e ( 1 - R ) m ,
C = A η 4 π ɛ 0 c 2 η 0 z τ d .
E rad ( peak ) = j σ 0 = - C E b F / F s 1 + ( F / F s ) ,
E i E i = n + 1 2 .
E rad E b = - β 0 ( β 1 F 1 + β 1 F ) .

Metrics