Abstract

Using freely propagating terahertz radiation, we have measured the complex dielectric constant of optically thick layered materials from 0.2 THz (6.6 cm−1) to 6 THz (200 cm−1). Transmission measurements of a CdTe–adhesive–Si structure have been successfully fitted to a theoretical model over the measurement range. The accuracy of the theoretical fit shows that the technique of time-domain spectroscopy offers advantages over other spectroscopic methods in the extreme far infrared below 200 cm−1. The signal-to-noise capability of our terahertz-spectroscopy technique permits accurate measurement of power transmission coefficients less than 0.001 (absorption coefficients >5000 cm−1) and index variations larger than λ(dn/dλ) > 44, as demonstrated by the accurate fit of our data through the Reststrahlen region of CdTe.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. C. Zhang and D. Auston, Appl. Phys. Lett. 56, 1011 (1990).
    [CrossRef]
  2. S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
    [CrossRef]
  3. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
    [CrossRef]
  4. S. E. Ralph and D. Grischkowsky, in Materials Research Society Symposium Proceedings, D. D. Nolte, N. M. Haegel, and K. W. Goossen, eds. (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 261, p. 89.
    [CrossRef]
  5. D. Grischkowsky, Opt. Photon. News 3(5), 21 (1992).
    [CrossRef]
  6. For a complete review of the development of TDS and an extensive reference list see Ref. 3.
  7. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1959).
  8. N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 61, 840 (1992).
    [CrossRef]
  9. S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, London, 1993), pp. 157–187.
  10. S. Perkowitz, J. Electron. Mater. 14, 551 (1985).
    [CrossRef]
  11. E. D. Palik, ed., Optical Properties of Solids (Academic, San Diego, Calif., 1985).
  12. M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694 (1990), and Ref. 2.
    [CrossRef]
  13. S. Perkowitz, Solid State Commun. 84, 19 (1992).
    [CrossRef]

1992 (3)

D. Grischkowsky, Opt. Photon. News 3(5), 21 (1992).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 61, 840 (1992).
[CrossRef]

S. Perkowitz, Solid State Commun. 84, 19 (1992).
[CrossRef]

1991 (1)

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

1990 (3)

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694 (1990), and Ref. 2.
[CrossRef]

X. C. Zhang and D. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

1985 (1)

S. Perkowitz, J. Electron. Mater. 14, 551 (1985).
[CrossRef]

Auston, D.

X. C. Zhang and D. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1959).

Fattinger, Ch.

Grischkowsky, D.

D. Grischkowsky, Opt. Photon. News 3(5), 21 (1992).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 61, 840 (1992).
[CrossRef]

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694 (1990), and Ref. 2.
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
[CrossRef]

S. E. Ralph and D. Grischkowsky, in Materials Research Society Symposium Proceedings, D. D. Nolte, N. M. Haegel, and K. W. Goossen, eds. (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 261, p. 89.
[CrossRef]

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 61, 840 (1992).
[CrossRef]

Keiding, S.

Perkowitz, S.

S. Perkowitz, Solid State Commun. 84, 19 (1992).
[CrossRef]

S. Perkowitz, J. Electron. Mater. 14, 551 (1985).
[CrossRef]

S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, London, 1993), pp. 157–187.

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

S. E. Ralph and D. Grischkowsky, in Materials Research Society Symposium Proceedings, D. D. Nolte, N. M. Haegel, and K. W. Goossen, eds. (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 261, p. 89.
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694 (1990), and Ref. 2.
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1959).

Zhang, X. C.

X. C. Zhang and D. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

Appl. Phys. Lett. (4)

X. C. Zhang and D. Auston, Appl. Phys. Lett. 56, 1011 (1990).
[CrossRef]

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. 61, 840 (1992).
[CrossRef]

M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694 (1990), and Ref. 2.
[CrossRef]

J. Electron. Mater. (1)

S. Perkowitz, J. Electron. Mater. 14, 551 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Photon. News (1)

D. Grischkowsky, Opt. Photon. News 3(5), 21 (1992).
[CrossRef]

Solid State Commun. (1)

S. Perkowitz, Solid State Commun. 84, 19 (1992).
[CrossRef]

Other (5)

E. D. Palik, ed., Optical Properties of Solids (Academic, San Diego, Calif., 1985).

For a complete review of the development of TDS and an extensive reference list see Ref. 3.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1959).

S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, London, 1993), pp. 157–187.

S. E. Ralph and D. Grischkowsky, in Materials Research Society Symposium Proceedings, D. D. Nolte, N. M. Haegel, and K. W. Goossen, eds. (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 261, p. 89.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Measured THz pulse for both the reference (no sample in beam path, solid curve) and the CdTe multilayer sample (dashed curve). The signal-to-noise capability is exemplified by the expanded portion of the reference signal. (b) Corresponding amplitude and phase spectra of both the reference and the sample time-domain data. CdTe-1, single-layer 320-μm-thick sample; CdTe-2, multilayer structure.

Fig. 2
Fig. 2

Measured (circles and dashed curve) power spectra transmission of the multilayer CdTe sample together with the results of the multilayer model (solid curve).

Fig. 3
Fig. 3

(a) Power absorption extracted from the measured transmission data by use of the layer thickness and the refractive index determined from the model. (b) Measured refractive index obtained from the transmission data. The solid curves are the theoretical predictions of the model. DATA 1a was obtained from the multilayer sample, and DATA 1b corresponds to the temporally windowed multilayer data. DATA 2 was obtained from the single, thick, CdTe layer.

Tables (1)

Tables Icon

Table 1 Parameters in the Three-Layer CdTe–GP–Si Model Giving the Best Fit to the Measured Transmission Spectrum over 10–180 cm−1a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ɛ ( ω ) = ( n + i k ) 2 = ɛ ( ) + S ω TO 2 ω TO 2 - ω 2 - i Γ ω ,

Metrics